Browse > Article
http://dx.doi.org/10.5713/ajas.2010.90333

Study of Hair Melanins in Various Hair Color Alpaca (Lama Pacos)  

Fan, Ruiwen (College of Animal Science and Veterinary Medicine, Shanxi, Agricultural University)
Yang, Gang (College of Animal Science and Veterinary Medicine, Shanxi, Agricultural University)
Dong, Changsheng (College of Animal Science and Veterinary Medicine, Shanxi, Agricultural University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.23, no.4, 2010 , pp. 444-449 More about this Journal
Abstract
The aim of this study was to measure the hair melanins of various colors and to find the relationship between the quantity of melanins and hair color phenotypes in alpacas. According to the Munsell color system, 3 healthy alpacas were selected for each of the 22 different hair color phenotypes (66 alpacas altogether). Alpaca hair was taken from the lateral thoracic region and then dissolved with different solutions to obtain melanins. The values of alkali-soluble melanins (ASM), eumelanin (EM) and pheomelanin (PM) were measured by spectrophotometric assay, and labeled as Sp.ASM, Sp.EM and Sp.PM, respectively. Data were analyzed using SPSS11.5 software. Results showed that average Sp.ASM and Sp.PM were increased as the color deepened from white to black, ranging from 0.500 to 4.543 for Sp.ASM and from 0.268 to 1.457 for Sp.EM. However, average Sp.PM had no such apparent relationship with color. Based on the value of Sp.ASM and EM, 7 hues were produced and gray was a single hue. Most of the data were in a normal distribution (p>0.10). ANOVA analysis showed that mean values of Sp.ASM, Sp.EM and Sp.PM were significantly different (p<0.05). The results also showed that Sp.ASM was positively correlated with Sp.EM but the correlation between Sp.ASM and Sp.PM was not significantly different from 0. It is concluded that EM is the major constituent of alpaca hair melanin; there is a significant correlation among ASM, EM and alpaca hair colors, and EM is the most reliable parameter for distinguishing these groups.
Keywords
Alkali Soluble Melanin; Eumelanin; Pheomelanin; Alpaca Hair Color; Correlation;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Sturm, R. A., R. D. Teasdele and N. F. Box. 2001. Human pigmentation genes: Identification, Structure and Consequences of PolymorpHic variation. Gene 277:49-62   DOI   PUBMED   ScienceOn
2 Barsh, G. S., T. Gunn, L. He, S. Schlossman and J. Duke-Cohan. 2000. Biochemical and genetic studies of pigment-type switching. Pigment Cell. Res. (Suppl) 8:48-53
3 Burchill, S. A., A. J. Thody and S. Ito. 1986. Melanocytestimulating hormone, throsinase activity and the regulation of eumelanogenesis and pheomelanogenesis in the hair follicular melanocytes of the mouse. J. Endocrinol. 109:15-21   DOI   ScienceOn
4 Gregory, S. B. 1996. The genetics of pigmentation: from fancy genes to complex traits. Tig. August. 12:299-305   DOI   ScienceOn
5 Ito, S., K. Wakamatsu and H. Ozeki. 1993. Spectrophotometric assay of eumelanin in tissue samples. Anal. Biochem. 215:273-277   DOI   ScienceOn
6 Sponenberg, D. P., S. Ito, L. A. Eng and K. Schwink. 1988. Pigment types of various color genotypes of horses. Pigment Cell Res. 1:410-413   DOI   ScienceOn
7 Cecchi, T., A. Valbonesi, P. Passamonti, E. Frank and C. Renieri. 2007. Quantitative variation of melanins in llama (Lama glama L.). Small. Rumin. Res. 71:52-58   DOI   ScienceOn
8 StepHane, C., G. Olivier, T. Sonia and A. Bruno. 2004. Absence of TRP-2 in melanogenic melanocytes of human hair. Pigment Cell Res. 17:488-497   DOI   ScienceOn
9 Cecchi, T., C. Cozzali, P. Passamonti, P. Ceccarelli, F. Pucciarelli and A. M. Gargiulo. 2004. Melanins and melanosomes from llama (Lama glama L.). Pigment Cell Res. 17:307-311   DOI   ScienceOn
10 Ito, S. 1993. High-performance liquid chromatography (HPLC) analysis of eu- and pheomelanin in melanogenesis control. J. Invest. Dermatol. 100:166S-171S   DOI   PUBMED
11 Ito, S. and K. Wakamatsu. 2003. Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review. Pigment Cell Res. 16:523-531   DOI   ScienceOn
12 Ozeki, H. S. Ito, K. Wakamatsu and T. Hirobe. 1995. Chemical characterization of hair melanins in various coat-color mutants of mice. J. Invest. Dermatol. 105:361-366   DOI   ScienceOn
13 Ozeki, H., S. Ito, K. Wakamatsu and A. J. Thody. 1996. Spectrophotometric characterization of eumelanin and pheomelanin in hair. Pigment Cell Res. 9:265-270   DOI   ScienceOn
14 Aliev, G., M. Rachkovsky, S. Ito, K. Wakamatsu and A. Ivanov. 1990. Pigment types in selected color genotypes of Asiatic sheep. Pigment Cell Res. 3:177-180   DOI   ScienceOn
15 Lamoreux, M. L., K. Wakamatsu and S. Ito. 2001. Interaction of major coat color gene functions in mice as studied by chemical analysis of eumelanin and pheomelanin. Pigment Cell Res. 14:23-31   DOI   ScienceOn
16 Hoffman, E. 2006. The complete alpaca book. 2nd Edition. Bonny Doon Press, California
17 Ito, S., K. Wakamatsu and H. Ozeki. 2000. Chemical analysis of melanins and its application to the study of the regulation of melanogenis. Pigment Cell Res. 13(Suppl. 8):103-109   DOI   ScienceOn
18 Commo. S, O. Gaillard and B. A. Bernard. 2004. Human hair greying is linked to a specific depletion of hair follicle melanocytes affecting both the bulb and the outer root sheath. Br. J. Dermatol. 150:435-443   DOI   ScienceOn