• Title/Summary/Keyword: Phenylethanoid

Search Result 16, Processing Time 0.019 seconds

Aldose Reductase Inhibition Effect of PhenolicvCompounds Isolated from Paulownia coreana Bark

  • Kim, Jin-Kyu;Lee, Yeon-Sil;Lim, Soon-Sung;Bae, Young-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.159-164
    • /
    • 2010
  • Nine compounds, caffeic acid, naringenin, apigenin, luteolin, kaempferol, verbascoside, isoverbascoside, isocampneoside II, and cistanoside F, were isolated from the EtOAc and n-BuOH fractions of P. coreana bark. The structures of these compounds (1-9) were elucidated by spectroscopic methods and literature data. All the isolates were subjected to in vitro bioassay to evaluate their inhibitory activity against rat lens aldose reductase. Among these, compounds 6 and 8 indicated the significant inhibitory activity on rat lens aldose reductase with $IC_{50}$ values of 2.67 and 5.59 ${\mu}M$, respectively. Especially, The inhibition activity of acteoside was 3.9 times better than that of quercetin as a positive control (10.6 ${\mu}M$). These results suggested that phenylethanoid glycosides are likely to be the potential compounds for the prevention and/or treatment of diabetic complications.

Influence of Tyrosol on Cell Growth Inhibition of KB Human Oral Cancer Cells

  • Lee, Ue-Kyung;Kim, Su-Gwan;Go, Dae-San;Yu, Sun-Kyoung;Kim, Chun Sung;Kim, Jeongsun;Kim, Do Kyung
    • International Journal of Oral Biology
    • /
    • v.41 no.4
    • /
    • pp.175-181
    • /
    • 2016
  • Tyrosol, a phenylethanoid and a derivative of phenethyl alcohol, possesses various biological properties, such as anti-oxidative and cardioprotective activity. Olive oil is the principal source of tyrosol in the human diet. However, so far the anti-cancer activity of tyrosol has not yet been well defined. This study therefore undertakes to examine the cytotoxic activity and the mechanism of cell death exhibited by tyrosol in KB human oral cancer cells. Treatment of KB cells with tyrosol induced the cell growth inhibition in a concentration- and a time-dependent manner. Furthermore, the treatment of tyrosol induced nuclear condensation and fragmentation of KB cells. Tyrosol also promoted proteolytic cleavage of procaspase-3, -7, -8 and -9, increasing the amounts of cleaved caspase-3, -7, -8 and -9. In addition, tyrosol increased the levels of cleaved PARP in KB cells. These results suggest that tyrosol induces the suppression of cell growth and cell apoptosis in KB human oral cancer cells, and is therefore a potential candidate for anti-cancer drug discovery.

A Short Review on the Chemistry, Pharmacological Properties and Patents of Obovatol and Obovatal (Neolignans) from Magnolia obovata

  • Chan, Eric Wei Chiang;Wong, Siu Kuin;Chan, Hung Tuck
    • Natural Product Sciences
    • /
    • v.27 no.3
    • /
    • pp.141-150
    • /
    • 2021
  • This short review on the chemistry, pharmacological properties and patents of obovatol and obovatal from Magnolia obovata is the first publication. Pharmacological properties are focused on anti-cancer, anti-inflammatory, anti-platelet and neuroprotective activities. Obovatol and obovatal were first isolated from the leaves of M. obovata. Also reported in the bark and fruits of M. obovata, obovatol and obovatal are neolignans i.e., biphenolic compounds bearing a C-O coupling. Other classes of compounds isolated and identified from M. obovata include sesquiterpene-neolignans, dineolignans, trineolignan, lignans, dilignans, phenylpropanoids, phenylethanoid glycosides, flavonoids, phenolic acids, alkaloids, sesquiterpenes, ketone and sterols. The anti-cancer properties of obovatol and obovatal involve apoptosis, inhibition of the growth, migration and invasion of cancer cell lines. However, obovatol displays cytotoxicity against cancer cells but not obovatal. Similarly, anti-inflammatory, anti-platelet, neuroprotective, anxiolytic and other pharmacological activities were only observed in obovatol. The disparity in pharmacological properties of obovatol and obovatal may be attributed to the -CHO group present in obovatal but absent in obovatol. From 2007 to 2013, eight patents were published on obovatol with one mentioning obovatal. They were all published at the U.S. Patent and Trademark Office by scientists of the Korea Research Institute of Bioscience and Biotechnology (KRIBB) as inventors and assignee, respectively. Some future research and prospects are suggested.

Quantitation and Radical Scavenging Activity Evaluation of Iridoids and Phenylethanoids from the Roots of Phlomis umbrosa (Turcz.) using DPPH Free Radical and DPPH-HPLC Methods, and their Cytotoxicity

  • Le, Duc Dat;Nguyen, Duc Hung;Zhao, Bing Tian;Min, Byung Sun;Song, Si Whan;Woo, Mi Hee
    • Natural Product Sciences
    • /
    • v.25 no.2
    • /
    • pp.122-129
    • /
    • 2019
  • The roots of Phlomis umbrosa (Turcz.) (Phlomidis Radix) have been traditionally used to treat cold, reduce swelling and staunch bleeding. Four iridoids (1 - 3 and 5) and six phenylethanoid derivatives (4, and 6 - 10) were isolated from the roots of P. umbrosa. A simple, sensitive, and reliable analytical HPLC/PDA method was developed, validated, and applied to determine 10 marker compounds in Phlomidis Radix. Furthermore, the isolates were evaluated for cytotoxic and anti-oxidant activities as well as DPPH-HPLC method. Among them, compounds 4 and 6 - 9 displayed potent anti-oxidant capacities using DPPH assay with $IC_{50}$ values of $27.7{\pm}2.4$, $10.2{\pm}1.1$, $18.0{\pm}0.8$, $19.1{\pm}0.3$, and $19.9{\pm}0.6{\mu}M$, and compounds 6, 8, and 9 displayed significant cytotoxic activity against HL-60 with $IC_{50}$ values of $35.4{\pm}3.1$, $18.6{\pm}2.0$, and $42.9{\pm}3.0{\mu}M$, respectively.

Echinacoside Induces UCP1- and ATP-Dependent Thermogenesis in Beige Adipocytes via the Activation of Dopaminergic Receptors

  • Kiros Haddish;Jong Won Yun
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1268-1280
    • /
    • 2023
  • Echinacoside (ECH) is a naturally occurring phenylethanoid glycoside, isolated from Echinacea angustifolia, and this study aimed to analyze its effect on thermogenesis and its interaction with dopaminergic receptors 1 and 5 (DRD1 and DRD5) in 3T3-L1 white adipocytes and mice models. We employed RT-PCR, immunoblot, immunofluorescence, a staining method, and an assay kit to determine its impact. ECH showed a substantial increase in browning signals in vitro and a decrease in adipogenic signals in vivo. Additionally, analysis of the iWAT showed that the key genes involved in beiging, mitochondrial biogenesis, and ATP-dependent thermogenesis were upregulated while adipogenesis and lipogenesis genes were downregulated. OXPHOS complexes, Ca2+ signaling proteins as well as intracellular Ca2+ levelswere also upregulated in 3T3-L1 adipocytes following ECH treatment. This was collectively explained by mechanistic studies which showed that ECH mediated the beiging process via the DRD1/5-cAMP-PKA and subsequent downstream molecules, whereas it co-mediated the α1-AR-signaling thermogenesis via the DRD1/5/SERCA2b/RyR2/CKmt pathway in 3T3-L1 adipocytes. Animal experiments revealed that there was a 12.28% reduction in body weight gain after the ECH treatment for six weeks. The effects of ECH treatment on adipose tissue can offer more insights into the treatment of obesity and metabolic syndrome.

Analysis of Essential oil, Quantification of Six Glycosides, and Nitric Oxide Synthase Inhibition Activity in Caryopteris incana

  • Nugroho, Agung;Lee, Sang Kook;Kim, Donghwa;Choi, Jae Sue;Park, Kyoung-Sik;Song, Byong-Min;Park, Hee-Juhn
    • Natural Product Sciences
    • /
    • v.24 no.3
    • /
    • pp.181-188
    • /
    • 2018
  • Caryopteris incana (Verbenaceae) has been used to treat cough, arthritis, and eczema in Oriental medicine. The two fractions ($CHCl_3-$ and BuOH fractions) and the essential oil of the plant material were subjected to the inducible nitric oxide synthase (iNOS) assay. The $IC_{50}$ of the $CHCl_3$ fraction and the essential oil on LPS-induced macrophage RAW 264.7 cells were $16.4{\mu}g/mL$ and $23.08{\mu}g/mL$, respectively. On gas chromatography (GC)-mass spectroscopy (MS) analysis, twenty-five components representing 85.5% amount of total essential oil were identified. On the chromatogram, three main substances, trans-pinocarveol, cis-citral, and pinocarvone, occupied 18.8%, 13.5% and 18.37% of total peak area. Furthermore, by HPLC-UV analysis, six compounds including one iridoid (8-O-acetylharpagide)- and five phenylethanoid glycosides (caryopteroside, acteoside, phlinoside A, 6-O-caffeoylphlinoside, and leucosceptoside A) isolated from the BuOH fraction were quantified. The content of six compounds were shown as the following order: caryopteroside (162.35 mg/g) > 8-O-acetylharpagide (93.28 mg/g) > 6-O-caffeoylphlinoside (28.15 mg/g) > phlinoside (22.60 mg/g) > leucosceptoside A (16.87 mg) > acteoside (7.05 mg/g).