• 제목/요약/키워드: Phenotypes

검색결과 1,002건 처리시간 0.027초

Toxicogenomics -A phenotype-independent approach-

  • Kanno, Jun
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2003년도 추계학술대회
    • /
    • pp.29-30
    • /
    • 2003
  • The whole genome sequences, mapped for humans and rodents, and technical capability of monitoring whole genome expression in a high throughput fashion enable us to perform the "whole genome profiling". The major characteristics of this profiling from the toxicological point of view are that the overt phenotypes are not the essential factors for the construction of toxicity database/informatics.(omitted)

  • PDF

Misexpression of AtTX12 encoding a Toll/interleukin-1 receptor domain induces growth defects and expression of defense-related genes partially independently of EDS1 in Arabidopsis

  • Song, Sang-Kee
    • BMB Reports
    • /
    • 제49권12호
    • /
    • pp.693-698
    • /
    • 2016
  • In this study, a tissue-specific GAL4/UAS activation tagging system was used for the characterization of genes which could induce lethality when ubiquitously expressed. A dominant mutant exhibiting stunted growth was isolated and named defective root development 1-D (drd1-D). The T-DNA tag was located within the promoter region of AtTX12, which is predicted to encode a truncated nucleotide-binding leucine-rich repeat (NLR) protein, containing a Toll/interleukin-1 receptor (TIR) domain. The transcript levels of AtTX12 and defense-related genes were elevated in drd1-D, and the misexpression of AtTX12 recapitulated the drd1-D phenotypes. In the presence of ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), a key transducer of signals triggered by TIR-type NLRs, a low-level of AtTX12 misexpression induced strong defective phenotypes including seedling lethality whereas, in the absence of EDS1, a high-level of AtTX12 misexpression induced weak growth defects like dwarfism, suggesting that AtTX12 might function mainly in an EDS1-dependent and partially in an EDS1-independent manner.

Erratum to: From cell senescence to age-related diseases: differential mechanisms of action of senescence-associated secretory phenotypes

  • Byun, Hae-Ok;Lee, Young-Kyoung;Kim, Jeong-Min;Yoon, Gyesoon
    • BMB Reports
    • /
    • 제49권11호
    • /
    • pp.641-650
    • /
    • 2016
  • Cellular senescence is a process by which cells enter a state of permanent cell cycle arrest. It is commonly believed to underlie organismal aging and age-associated diseases. However, the mechanism by which cellular senescence contributes to aging and age-associated pathologies remains unclear. Recent studies showed that senescent cells exert detrimental effects on the tissue microenvironment, generating pathological facilitators or aggravators. The most significant environmental effector resulting from senescent cells is the senescence-associated secretory phenotype (SASP), which is constituted by a strikingly increased expression and secretion of diverse pro-inflammatory cytokines. Careful investigation into the components of SASPs and their mechanism of action, may improve our understanding of the pathological backgrounds of age-associated diseases. In this review, we focus on the differential expression of SASP-related genes, in addition to SASP components, during the progress of senescence. We also provide a perspective on the possible action mechanisms of SASP components, and potential contributions of SASP-expressing senescent cells, to age-associated pathologies.

Simple Statistical Tools to Detect Signals of Recent Polygenic Selection

  • Piffer, Davide
    • Interdisciplinary Bio Central
    • /
    • 제6권1호
    • /
    • pp.1.1-1.6
    • /
    • 2014
  • A growing body of evidence shows that most psychological traits are polygenic, that is they involve the action of many genes with small effects. However, the study of selection has disproportionately been on one or a few genes and their associated sweep signals (rapid and large changes in frequency). If our goal is to study the evolution of psychological variables, such as intelligence, we need a model that explains the evolution of phenotypes governed by many common genetic variants. This study illustrates simple statistical tools to detect signals of recent polygenic selection: a) ANOVA can be used to reveal significant deviation from random distribution of allele frequencies across racial groups. b) Principal component analysis can be used as a tool for finding a factor that represents the strength of recent selection on a phenotype and the underlying genetic variation. c) Method of correlated vectors: the correlation between genetic frequencies and the average phenotypes of different populations is computed; then, the resulting correlation coefficients are correlated with the corresponding alleles' genome-wide significance. This provides a measure of how selection acted on genes with higher signal to noise ratio. Another related test is that alleles with large frequency differences between populations should have a higher genome-wide significance value than alleles with small frequency differences. This paper fruitfully employs these tools and shows that common genetic variants exhibit subtle frequency shifts and that these shifts predict phenotypic differences across populations.

A simple phenotyping method for deep-rooting rice grown in pots

  • Han, Jae-Hyuk;Shin, Na-Hyun;Moon, Jae-Hoon;Chin, Joong Hyoun;Yoo, Soo-Cheul
    • Journal of Plant Biotechnology
    • /
    • 제43권4호
    • /
    • pp.444-449
    • /
    • 2016
  • Deep rooting, which enables plants to extract water from greater soil depths, is a critical strategy for improving plant survival under water-deficient conditions. However, as it is difficult to observe intact root systems belowground, several techniques have been developed to screen deep- and shallow-rooting phenotypes in rice. Here, we introduce a simple and convenient method for deep- and shallow-rooting phenotyping using a unique combination of sand, soil, and plastic mesh netting. Vandana, a drought-tolerant rice variety, and Dongjin, a Korean japonica rice variety, were used to analyze root phenotypes. No significant differences in root length were observed in rice grown under irrigated conditions regardless of net position, whereas roots were significantly longer, and ratio of deep root (RDR) values were significantly higher in Vandana rice grown under semi-drought conditions. In summary, this simple and useful method represents a low-cost means of phenotyping the roots of rice and other crops grown in various-sized pots and at multiple plant growth stages.

Survey of Fungicide Resistance for Chemical Control of Botrytis cinerea on Paprika

  • Yoon, Cheol-Soo;Ju, Eun-Hee;Yeoung, Young-Rog;Kim, Byung-Sup
    • The Plant Pathology Journal
    • /
    • 제24권4호
    • /
    • pp.447-452
    • /
    • 2008
  • Four hundred and sixty six isolates of B. cinerea were obtained from infected leaves, stems and fruits of paprika grown in greenhouses or plastic film houses in Gangwon province, Korea, between August and November in 2006 and 2007. These isolates were classified into five representative phenotypes of resistant (R) and sensitive (S) reactions as SSR, SRR, RSS, RRS and RSR according to the responses of isolates against benzimidazole, dicarboximide and N-phenyl-carbamate fungicide in order. The percentage of five phenotypes were 51.3, 2.4, 35.6, 8.1 and 2.6%, respectively. The SSR phenotype (51.3%) was the most common. Among the nineteen fungicide products evaluated to compare their efficacy against gray mold pathogen on the paprika fruit inoculated with fungal mycelia, the mixture of diethofencarb and carbendazim was the most effective followed by iprodione, boscalid, the mixture of iprodione and thiophanate-methyl, fludioxonil, polyoxin-B, fluazinam, the mixture of tebuconazole and tolyfluanid and procymidone; while in the assay methods inoculated with fungal spores, the mixture of tebuconazole and tolyfluanid was the most effective in controlling gray mold followed by boscalid, fludioxonil, the mixture of diethofencarb and carbendazim and the mixture of pyrimethanil and chlorothalonil.

Nicotinamide Exerts Antioxidative Effects on Senescent Cells

  • Kwak, Ju Yeon;Ham, Hyun Joo;Kim, Cheol Min;Hwang, Eun Seong
    • Molecules and Cells
    • /
    • 제38권3호
    • /
    • pp.229-235
    • /
    • 2015
  • Nicotinamide (NAM) has been shown to suppress reactive oxygen species (ROS) production in primary human fibroblasts, thereby extending their replicative lifespan when added to the medium during long-term cultivation. Based on this finding, NAM is hypothesized to affect cellular senescence progression by keeping ROS accumulation low. In the current study, we asked whether NAM is indeed able to reduce ROS levels and senescence phenotypes in cells undergoing senescence progression and those already in senescence. We employed two different cellular models: MCF-7 cells undergoing senescence progression and human fibroblasts in a state of replicative senescence. In both models, NAM treatment substantially decreased ROS levels. In addition, NAM attenuated the expression of the assessed senescence phenotypes, excluding irreversible growth arrest. N-acetyl cysteine, a potent ROS scavenger, did not have comparable effects in the tested cell types. These data show that NAM has potent antioxidative as well as anti-senescent effects. Moreover, these findings suggest that NAM can reduce cellular deterioration caused by oxidative damage in postmitotic cells in vivo.

Metabolic engineering of aliphatic glucosinolates in Chinese cabbage plants expressing Arabidopsis MAM1, CYP79F1, and CYP83A1

  • Zang, Yun-Xiang;Kim, Jong-Hoon;Park, Young-Doo;Kim, Doo-Hwan;Hong, Seung-Beom
    • BMB Reports
    • /
    • 제41권6호
    • /
    • pp.472-478
    • /
    • 2008
  • Three Arabidopsis cDNAs, MAM1, CYP79F1, and CYP83A1, required for aliphatic glucosinolate biosynthesis were introduced into Chinese cabbage by Agrobacterium tumefaciens-mediated transformation. The transgenic lines overexpressing MAM1 or CYP83A1 showed wild-type phenotypes. However, all the lines overexpressing CYP79F1 displayed phenotypes different from wild type with respect to the stem thickness as well as leaf width and shape. Glucosinolate contents of the transgenic plants were compared with those of wild type. In the MAM1 line M1-1, accumulation of aliphatic glucosinolates gluconapin and glucobrassicanapin significantly increased. In the CYP83A1 line A1-1, all the aliphatic glucosinolate levels were increased, and the levels of gluconapin and glucobrassicanapin were elevated by 4.5 and 2 fold, respectively. The three CYP79F1 transgenic lines exhibited dissimilar glucosinolate profiles. The F1-1 line accumulated higher levels of gluconapoleiferin, glucobrassicin, and 4-methoxy glucobrassicin. However, F1-2 and F1-3 lines demonstrated a decrease in the levels of gluconapin and glucobrassicanapin and an increased level of 4-hydroxy glucobrassicin.

Crystal vilet 색소분해능이 소실된 Citrobacter sp. 의 분리 및 특성 (Isolation and Characterization of Citrobacter sp. Mutants Defective in Decolorization of Crystal Violet)

  • Kim, Ji-Yoon;Kim, Kyung-Woon;Park, Yong-Lark;Cho, Young-Su;Lee, Young-Choon
    • 생명과학회지
    • /
    • 제10권4호
    • /
    • pp.333-339
    • /
    • 2000
  • To identify genes involved in the decolorization of crystal violet, we isolated random mutants generated by transponson insertion in crystal violet-declorizing bacterium, Citrobacter sp. The resulting mutant bank yielded mutants with six distinct phenotypes, and Southern hybridization with a Tn5 fragment as a probe showed a single hybridized with six distinct phenotypes, and Southern hybridization with a Tn5 fragment as a probe showed a single hybridized band in the mutants Ctg 2, 5 an 6, whereas two and three bands were detected in Ctg1, 4 and 3, respectively. Tn5-inserted genes were isolated and the DNA sequence flanking Tn5 was determined. From comparison with a sequence database, putative protein product encoded by ctg 5 was identified as E. coli maltose transproter(Mal G) homolog, whereas the deduced amino acid sequence of the other ctg genes did not show any significant similarity with any DNA or protein sequency. Therefore, these results indicate that the other ctg genes except ctg 5 encode new proteins responsible for decolorization of crystal violet.

  • PDF