References
- Braun, P. G. and Sutton, J. C. 1984. Effectiveness of fungicides in reducing inoculum production by Botrytis cinerea in dead strawberry leaves. In: Proceedings of the British Crop Protection Conference. Pests and Dis. 3:971-974
- Bulger, M. A., Ellis, M. A. and Madden, L. V. 1987. Influence of temperature and wetness duration on infection of strawberry flowers by Botrytis cinerea and disease incidence of fruit originating from infected flowers. Phytopathology 77:1225-1230 https://doi.org/10.1094/Phyto-77-1225
- de Visser C. L. M. 1996. Field evaluation of a supervised control system for Botrytis leaf blight in spring sown onions in the Netherlands. Eur. J. Plant Pathol. 102:795-805 https://doi.org/10.1007/BF01877155
- Delp, C. J. 1988. Fungicide resistance in North America. The American Phytopathological Society, St. Paul, Minn., 133pp
- Dik, A. J. and Elad, Y. 1999. Comparison of antagonist of Botrytis cinerea in greenhouse-grown cucumber and tomato under different climatic conditions. Eur. J. Plant Pathol. 105:123-137 https://doi.org/10.1023/A:1008778213278
- Edlich, W. and Lyr, H. 1992. Target sites of fungicides with primary effects on lipid peroxidation. In: Target Sites of Fungicide Action ed. by W. Koller, pp. 53-63. CRC press, Boca Raton, FL, USA
- Elad, Y., Shabi, E. and Katan, T. 1988. Negative cross resistance between benzimidazole and N-phenylcarbamate fungicides and control of Botrytis cinerea on grapes. Plant Pathol. 37: 141-147 https://doi.org/10.1111/j.1365-3059.1988.tb02206.x
- Fujimura, M. 1993. A new fungicide diethofencarb to cope with benzimidazole resistance. Jpn Plant Prot. 47:26-29
- Georgopoulos, S. G. 1977. Development of fungal resistance to fungicides. In: Antfungal Compounds. ed. by M. R. Siegel and H. D. Sisler, pp. 439-495. Dekker. New York
- Ishii, H. 1992. Target sites of tubulin-binding fungicides. In : Target sites of fungicide action, ed. by W. Koller, pp. 43-52. CRC Press
- Josepovits, G., Gasztonyi, M. and Mikite, G. 1992. Negative cross-resistance to N-phenylanilines in benzimidazole-resistant strains of Botrytis cinerea, Venturia nashicola and Venturia inaequalis. Pestic. Sci. 35:237-242 https://doi.org/10.1002/ps.2780350307
- Kim, B. S., Choi, G. J. and Cho, K. Y. 1993. Response to several fungicides of Botrytis cinerea isolates resistant to benzimidazole and dicarboximide fungicides. Korean J. Plant Pathol. 9: 98-103 (in Korean)
- Kim. B. S., Lim, T. H., Park, E. W. and Cho, K. Y. 1995. Occurrence of multiple resistant isolates of Botrytis cinerea to benzimidazole and N-phenylcarbamate fungicides. Korean J. Plant Pathol. 11:146-150 (in Korean)
- Kim, B. S., Park, E. W. and Cho, K. Y. 1998. Changes in sensitivity levels of Botrytis cinerea populations to benzimidazole, dicarboximide, and N-phenylcarbamate fungicides. Korean J. Plant Pathol. 14:693-699 (in Korean)
- Kim, B. S., Park, E. W. and Cho, K. Y. 2001. Population dynamics and fitness comparison of sensitive and resistant phenotypes of Botrytis cinerea to benzimidazole, dicarboximide, and NPhenylcarbamate fungicides. Plant Pathol. J. 17:149-153
- Kim, C. H. and Kwon, S. I. 1993. Parasitic fitness of procymidone- resistant isolates of Botrytis cinerea on strawberry. Korean J. Plant Pathol. 9:26-30
- Leroux, P. 1995. Progress and problems in the control of Botrytis cinerea in grapevine. Pestic. Outlook. October 1995:13-19
- Moorman, G. W. and Lease, R. T. 1992. Benzimidazole and dicarboximide- resistant Botrytis cinerea from Pennsylvania greenhouse. Plant Dis. 76:477-480 https://doi.org/10.1094/PD-76-0477
- Pappas A. C. 1997. Evolution of fungicide resistance in Botrytis cinerea in protected crops in Greece. Crop Prot. 16:257-263 https://doi.org/10.1016/S0261-2194(96)00096-8
- Park, I. C., Yeh, W. H. and Kim, C. H. 1992. Occurrence of isolates of Botrytis cinerea resistant to procymidone, vinclozolin and benomyl in strawberry fields in Korea. Korean J. Plant Pathol. 8:41-46 (in Korean)
- Raposo, R., Delcan, J., Gomez, V. and Melgarejo, P. 1996. Distribution and fitness of isolates of Botrytis cinerea with multiple fungicide resistance in Spanish greenhouses. Plant Pathol. 45: 497-505 https://doi.org/10.1046/j.1365-3059.1995.d01-140.x
- Vermeulen, T., Schoonbeek, H. and De Waard, M. A. 2001. The ABC transporter BcatrB from Botrytis cinerea is a determinant of the activity of the phenylpyrrole fungicide fludioxonil. Pest Manag. Sci. 57:393-402 https://doi.org/10.1002/ps.309
Cited by
- Efficacy of Combined Formulations of Fungicides with Different Modes of Action in Controlling Botrytis Gray Mold Disease in Chickpea vol.2014, 2014, https://doi.org/10.1155/2014/639246
- The pests survey of paprika export complexes and packing house in Korea vol.40, pp.2, 2013, https://doi.org/10.7744/cnujas.2013.40.2.093
- Resistance of Botrytis cinerea to fungicides controlling gray mold on strawberry in Brazil vol.76, pp.2, 2017, https://doi.org/10.1590/1678-4499.055
- Mutation at Codon 198 Of Tub2 Gene for Carbendazim Resistance in Colletotrichum Gloeosporioides Causing Mango Anthracnose in Thailand vol.51, pp.4, 2011, https://doi.org/10.2478/v10045-011-0061-5
- Baseline sensitivity of natural populations and characterization of resistant strains of Botrytis cinerea to fluazinam vol.44, pp.4, 2015, https://doi.org/10.1007/s13313-015-0358-3