Erratum to: From cell senescence to age-related diseases: differential mechanisms of action of senescence-associated secretory phenotypes |
Byun, Hae-Ok
(Department of Biochemistry, Ajou University School of Medicine)
Lee, Young-Kyoung (Department of Biochemistry, Ajou University School of Medicine) Kim, Jeong-Min (Department of Biochemistry, Ajou University School of Medicine) Yoon, Gyesoon (Department of Biochemistry, Ajou University School of Medicine) |
1 | Salminen A, Ojala J, Kaarniranta K, Haapasalo A, Hiltunen M and Soininen H (2011) Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype. Eur J Neurosci 34, 3-11 DOI |
2 | Kumar S, Millis AJ and Baglioni C (1992) Expression of interleukin 1-inducible genes and production of interleukin 1 by aging human fibroblasts. Proc Natl Acad Sci U S A 89, 4683-4687 DOI |
3 | Garfinkel S, Brown S, Wessendorf JH and Maciag T (1994) Post-transcriptional regulation of interleukin 1 alpha in various strains of young and senescent human umbilical vein endothelial cells. Proc Natl Acad Sci U S A 91, 1559-1563 DOI |
4 | Lu SY, Chang KW, Liu CJ et al (2006) Ripe areca nut ex-tract induces G1 phase arrests and senescence-associated phenotypes in normal human oral keratinocyte. Carcinogenesis 27, 1273-1284 DOI |
5 | Sarkar D, Lebedeva IV, Emdad L, Kang DC, Baldwin AS, Jr. and Fisher PB (2004) Human polynucleotide phosphor-ylase (hPNPaseold-35): a potential link between aging and inflammation. Cancer Res 64, 7473-7478 DOI |
6 | Orjalo AV, Bhaumik D, Gengler BK, Scott GK and Campisi J (2009) Cell surface-bound IL-1alpha is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network. Proc Natl Acad Sci U S A 106, 17031-17036 DOI |
7 | Coppe JP, Patil CK, Rodier F et al (2010) A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen. PLoS One 5, e9188 DOI |
8 | Acosta JC, Banito A, Wuestefeld T et al (2013) A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 15, 978-990 DOI |
9 | West MD, Pereira-Smith OM and Smith JR (1989) Replicative senescence of human skin fibroblasts correlates with a loss of regulation and overexpression of colla-genase activity. Exp Cell Res 184, 138-147 DOI |
10 | Millis AJ, Hoyle M, McCue HM and Martini H (1992) Differential expression of metalloproteinase and tissue inhibitor of metalloproteinase genes in aged human fibroblasts. Exp Cell Res 201, 373-379 DOI |
11 | Brew K, Dinakarpandian D and Nagase H (2000) Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 1477, 267-283 DOI |
12 | Zeng G and Millis AJ (1996) Differential regulation of col-lagenase and stromelysin mRNA in late passage cultures of human fibroblasts. Exp Cell Res 222, 150-156 DOI |
13 | Blasi F and Carmeliet P (2002) uPAR: a versatile signalling orchestrator. Nat Rev Mol Cell Biol 3, 932-943 |
14 | Coppe JP, Desprez PY, Krtolica A and Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5, 99-118 DOI |
15 | Reichenstein M, Reich R, LeHoux JG and Hanukoglu I (2004) ACTH induces TIMP-1 expression and inhibits col-lagenase in adrenal cortex cells. Mol Cell Endocrinol 215, 109-114 DOI |
16 | Binder BR, Christ G, Gruber F et al (2002) Plasminogen activator inhibitor 1: physiological and pathophysiological roles. News Physiol Sci 17, 56-61 |
17 | Alessi MC, Poggi M and Juhan-Vague I (2007) Plasminogen activator inhibitor-1, adipose tissue and insulin resistance. Curr Opin Lipidol 18, 240-245 DOI |
18 | Gils A and Declerck PJ (2004) The structural basis for the pathophysiological relevance of PAI-I in cardiovascular diseases and the development of potential PAI-I inhibitors. Thromb Haemost 91, 425-437 |
19 | Schroder WA, Major L and Suhrbier A (2011) The role of SerpinB2 in immunity. Crit Rev Immunol 31, 15-30 DOI |
20 | Hwa V, Oh Y and Rosenfeld RG (1999) The insulin-like growth factor-binding protein (IGFBP) superfamily. Endocr Rev 20, 761-787 |
21 | Hayashida K, Bartlett AH, Chen Y and Park PW (2010) Molecular and cellular mechanisms of ectodomain shedding. Anat Rec (Hoboken) 293, 925-937 DOI |
22 | Stewart CE, Bates PC, Calder TA, Woodall SM and Pell JM (1993) Potentiation of insulin-like growth factor-I (IGF-I) activity by an antibody: supportive evidence for enhancement of IGF-I bioavailability in vivo by IGF binding proteins. Endocrinology 133, 1462-1465 DOI |
23 | Clemmons DR, Busby WH, Arai T et al (1995) Role of in-sulin-like growth factor binding proteins in the control of IGF actions. Prog Growth Factor Res 6, 357-366 DOI |
24 | Chow FL and Fernandez-Patron C (2007) Many membrane proteins undergo ectodomain shedding by proteolytic cleavage. Does one sheddase do the job on all of these proteins? IUBMB Life 59, 44-47 DOI |
25 | Athauda G, Giubellino A, Coleman JA et al (2006) c-Met ectodomain shedding rate correlates with malignant potential. Clin Cancer Res 12, 4154-4162 DOI |
26 | Kenyon C, Chang J, Gensch E, Rudner A and Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366, 461-464 DOI |
27 | Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 120, 449-460 DOI |
28 | Kojima H, Kunimoto H, Inoue T and Nakajima K (2012) The STAT3-IGFBP5 axis is critical for IL-6/gp130-induced premature senescence in human fibroblasts. Cell Cycle 11, 730-739 DOI |
29 | Chen D, Yoo BK, Santhekadur PK et al (2011) Insulin-like growth factor-binding protein-7 functions as a potential tumor suppressor in hepatocellular carcinoma. Clin Cancer Res 17, 6693-6701 DOI |
30 | Micutkova L, Diener T, Li C et al (2011) Insulin-like growth factor binding protein-6 delays replicative senescence of human fibroblasts. Mech Ageing Dev 132, 468-479 DOI |
31 | Itahana K, Campisi J and Dimri GP (2007) Methods to detect biomarkers of cellular senescence: the sen-escence-associated beta-galactosidase assay. Methods Mol Biol 371, 21-31 DOI |
32 | Chen QM, Tu VC, Catania J, Burton M, Toussaint O and Dilley T (2000) Involvement of Rb family proteins, focal adhesion proteins and protein synthesis in senescent mor-phogenesis induced by hydrogen peroxide. J Cell Sci 113 (Pt 22), 4087-4097 |
33 | Balaban RS, Nemoto S and Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120, 483-495 DOI |
34 | Passos JF, Nelson G, Wang C et al (2010) Feedback be-tween p21 and reactive oxygen production is necessary for cell senescence. Mol Syst Biol 6, 347 |
35 | Rodier F and Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192, 547-556 DOI |
36 | Kuilman T, Michaloglou C, Mooi WJ and Peeper DS (2010) The essence of senescence. Genes Dev 24, 2463-2479 DOI |
37 | Narita M, Nunez S, Heard E et al (2003) Rb-mediated het-erochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703-716 DOI |
38 | Freund A, Orjalo AV, Desprez PY and Campisi J (2010) Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med 16, 238-246 DOI |
39 | Campisi J, Andersen JK, Kapahi P and Melov S (2011) Cellular senescence: a link between cancer and age-re-lated degenerative disease? Semin Cancer Biol 21, 354-359 |
40 | Kim YM, Byun HO, Jee BA et al (2013) Implications of time-series gene expression profiles of replicative senescence. Aging Cell 12, 622-634 DOI |
41 | Cristofalo VJ, Lorenzini A, Allen RG, Torres C and Tresini M (2004) Replicative senescence: a critical review. Mech Ageing Dev 125, 827-848 DOI |
42 | Martin JA and Buckwalter JA (2001) Roles of articular cartilage aging and chondrocyte senescence in the pathogenesis of osteoarthritis. Iowa Orthop J 21, 1-7 |
43 | Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513-522 DOI |
44 | Dimri GP, Lee X, Basile G et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92, 9363-9367 DOI |
45 | Hayflick L and Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25, 585-621 DOI |
46 | Minamino T, Miyauchi H, Yoshida T, Ishida Y, Yoshida H and Komuro I (2002) Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation 105, 1541-1544 DOI |
47 | Youdim MB and Riederer P (1993) The role of iron in senescence of dopaminergic neurons in Parkinson's disease. J Neural Transm Suppl 40, 57-67 |
48 | Han X and Boisvert WA (2015) Interleukin-10 protects against atherosclerosis by modulating multiple athero-genic macrophage function. Thromb Haemost 113, 505-512 DOI |
49 | Comi P, Chiaramonte R and Maier JA (1995) Senescence-dependent regulation of type 1 plasminogen activator inhibitor in human vascular endothelial cells. Exp Cell Res 219, 304-308 DOI |
50 | West MD, Shay JW, Wright WE and Linskens MH (1996) Altered expression of plasminogen activator and plasmi-nogen activator inhibitor during cellular senescence. Exp Gerontol 31, 175-193 DOI |
51 | Sherwood SW, Rush D, Ellsworth JL and Schimke RT (1988) Defining cellular senescence in IMR-90 cells: a flow cytometric analysis. Proc Natl Acad Sci U S A 85, 9086-9090 DOI |
52 | Hwang ES, Yoon G and Kang HT (2009) A comparative analysis of the cell biology of senescence and aging. Cell Mol Life Sci 66, 2503-2524 DOI |
53 | Wang E and Gundersen D (1984) Increased organization of cytoskeleton accompanying the aging of human fibroblasts in vitro. Exp Cell Res 154, 191-202 DOI |
54 | Cristofalo VJ and Kritchevsky D (1969) Cell size and nucleic acid content in the diploid human cell line WI-38 during aging. Med Exp Int J Exp Med 19, 313-320 |
55 | Wagner M, Hampel B, Bernhard D, Hala M, Zwerschke W and Jansen-Durr P (2001) Replicative senescence of human endothelial cells in vitro involves G1 arrest, poly-ploidization and senescence-associated apoptosis. Exp Gerontol 36, 1327-1347 DOI |
56 | Takahashi A, Ohtani N and Hara E (2007) Irreversibility of cellular senescence: dual roles of p16INK4a/Rb-pathway in cell cycle control. Cell Div 2, 10 DOI |
57 | Serrano M, Lin AW, McCurrach ME, Beach D and Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593-602 DOI |
58 | Kulju KS and Lehman JM (1995) Increased p53 protein associated with aging in human diploid fibroblasts. Exp Cell Res 217, 336-345 DOI |
59 | Greenberg SB, Grove GL and Cristofalo VJ (1977) Cell size in aging monolayer cultures. In Vitro 13, 297-300 DOI |
60 | Chen X, Zhang W, Gao YF, Su XQ and Zhai ZH (2002) Senescence-like changes induced by expression of p21(waf1/Cip1) in NIH3T3 cell line. Cell Res 12, 229-233 DOI |
61 | Herbig U, Jobling WA, Chen BP, Chen DJ and Sedivy JM (2004) Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell 14, 501-513 DOI |
62 | Castro P, Xia C, Gomez L, Lamb DJ and Ittmann M (2004) Interleukin-8 expression is increased in senescent prostatic epithelial cells and promotes the development of benign prostatic hyperplasia. Prostate 60, 153-159 DOI |
63 | Baker DJ, Wijshake T, Tchkonia T et al (2011) Clearance of p16Ink4a-positive senescent cells delays age-ing-associated disorders. Nature 479, 232-236 DOI |
64 | Aikata H, Takaishi H, Kawakami Y et al (2000) Telomere reduction in human liver tissues with age and chronic inflammation. Exp Cell Res 256, 578-582 DOI |
65 | d'Adda di Fagagna F, Reaper PM, Clay-Farrace L et al (2003) A DNA damage checkpoint response in telo-mere-initiated senescence. Nature 426, 194-198 DOI |
66 | Rodier F, Coppe JP, Patil CK et al (2009) Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 11, 973-979 DOI |
67 | Braig M and Schmitt CA (2006) Oncogene-induced senescence: putting the brakes on tumor development. Cancer Res 66, 2881-2884 DOI |
68 | Lee S, Dorken B and Schmitt CA (2004) Extracorporeal photopheresis in graft-versus-host disease: ultraviolet radiation mediates T cell senescence in vivo. Transplantation 78, 484-485 |
69 | Ewald JA, Desotelle JA, Wilding G and Jarrard DF (2010) Therapy-induced senescence in cancer. J Natl Cancer Inst 102, 1536-1546 DOI |
70 | Malumbres M, Perez De Castro I, Hernandez MI, Jimenez M, Corral T and Pellicer A (2000) Cellular response to on-cogenic ras involves induction of the Cdk4 and Cdk6 inhibitor p15(INK4b). Mol Cell Biol 20, 2915-2925 DOI |
71 | He J, Kallin EM, Tsukada Y and Zhang Y (2008) The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(Ink4b). Nat Struct Mol Biol 15, 1169-1175 DOI |
72 | Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D and Barrett JC (1996) Involvement of the cyclin-dependent kin-ase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci U S A 93, 13742-13747 DOI |
73 | Stein GH, Beeson M and Gordon L (1990) Failure to phos-phorylate the retinoblastoma gene product in senescent human fibroblasts. Science 249, 666-669 DOI |
74 | Stein GH and Dulic V (1998) Molecular mechanisms for the senescent cell cycle arrest. J Investig Dermatol Symp Proc 3, 14-18 |
75 | Campisi J and d'Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8, 729-740 DOI |
76 | Fingar DC, Salama S, Tsou C, Harlow E and Blenis J (2002) Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev 16, 1472-1487 DOI |
77 | Mamane Y, Petroulakis E, LeBacquer O and Sonenberg N (2006) mTOR, translation initiation and cancer. Oncogene 25, 6416-6422 DOI |
78 | Yentrapalli R, Azimzadeh O, Sriharshan A et al (2013) The PI3K/Akt/mTOR pathway is implicated in the premature senescence of primary human endothelial cells ex-posed to chronic radiation. PLoS One 8, e70024 DOI |
79 | Seo YH, Jung HJ, Shin HT et al (2008) Enhanced glyco-genesis is involved in cellular senescence via GSK3/GS modulation. Aging Cell 7, 894-907 DOI |
80 | Kim YM, Shin HT, Seo YH et al (2010) Sterol regulatory element-binding protein (SREBP)-1-mediated lipogenesis is involved in cell senescence. J Biol Chem 285, 29069-29077 DOI |
81 | De Priester W, Van Manen R and Knook DL (1984) Lysosomal activity in the aging rat liver: II. Morphometry of acid phosphatase positive dense bodies. Mech Ageing Dev 26, 205-216 DOI |
82 | Yoon YS, Yoon DS, Lim IK et al (2006) Formation of elongated giant mitochondria in DFO-induced cellular senescence: involvement of enhanced fusion process through modulation of Fis1. J Cell Physiol 209, 468-480 DOI |
83 | Atadja P, Wong H, Garkavtsev I, Veillette C and Riabowol K (1995) Increased activity of p53 in senescing fibroblasts. Proc Natl Acad Sci U S A 92, 8348-8352 DOI |
84 | Nishio K, Inoue A, Qiao S, Kondo H and Mimura A (2001) Senescence and cytoskeleton: overproduction of vimentin induces senescent-like morphology in human fibroblasts. Histochem Cell Biol 116, 321-327 DOI |
85 | Kumazaki T, Kobayashi M and Mitsui Y (1993) Enhanced expression of fibronectin during in vivo cellular aging of human vascular endothelial cells and skin fibroblasts. Exp Cell Res 205, 396-402 DOI |
86 | Eren M, Boe AE, Murphy SB et al (2014) PAI-1-regulated extracellular proteolysis governs senescence and survival in Klotho mice. Proc Natl Acad Sci U S A 111, 7090-7095 DOI |
87 | Kueper T, Grune T, Prahl S et al (2007) Vimentin is the specific target in skin glycation. Structural prerequisites, functional consequences, and role in skin aging. J Biol Chem 282, 23427-23436 DOI |
88 | Coppe JP, Patil CK, Rodier F et al (2008) Senescence-asso-ciated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6, 2853-2868 |
89 | Vital P, Castro P, Tsang S and Ittmann M (2014) The sen-escence-associated secretory phenotype promotes benign prostatic hyperplasia. Am J Pathol 184, 721-731 DOI |
90 | Brookes S, Rowe J, Gutierrez Del Arroyo A, Bond J and Peters G (2004) Contribution of p16(INK4a) to replicative senescence of human fibroblasts. Exp Cell Res 298, 549-559 DOI |
91 | Salminen A and Kaarniranta K (2010) Glycolysis links p53 function with NF-kappaB signaling: impact on cancer and aging process. J Cell Physiol 224, 1-6 |
92 | Childs BG, Durik M, Baker DJ and van Deursen JM (2015) Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med 21, 1424-1435 DOI |
93 | Bavik C, Coleman I, Dean JP, Knudsen B, Plymate S and Nelson PS (2006) The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms. Cancer Res 66, 794-802 DOI |
94 | Acosta JC, O'Loghlen A, Banito A, Raguz S and Gil J (2008) Control of senescence by CXCR2 and its ligands. Cell Cycle 7, 2956-2959 DOI |
95 | Wajapeyee N, Serra RW, Zhu X, Mahalingam M and Green MR (2008) Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell 132, 363-374 DOI |
96 | Parrinello S, Coppe JP, Krtolica A and Campisi J (2005) Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. J Cell Sci 118, 485-496 DOI |
97 | Krtolica A, Parrinello S, Lockett S, Desprez PY and Campisi J (2001) Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci U S A 98, 12072-12077 DOI |
98 | Kortlever RM, Higgins PJ and Bernards R (2006) Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat Cell Biol 8, 877-884 DOI |
99 | Kuilman T, Michaloglou C, Vredeveld LC et al (2008) Oncogene-induced senescence relayed by an inter-leukin-dependent inflammatory network. Cell 133, 1019-1031 DOI |