• Title/Summary/Keyword: Phenolic Mediators

Search Result 19, Processing Time 0.03 seconds

Induction of MicroRNA-9 Mediates Cytotoxicity of Curcumin Against SKOV3 Ovarian Cancer Cells

  • Zhao, Song-Feng;Zhang, Xiao;Zhang, Xiao-Jian;Shi, Xiu-Qin;Yu, Zu-Jiang;Kan, Quan-Cheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3363-3368
    • /
    • 2014
  • Background: Curcumin, a phenolic compound extracted from the rhizomes of Curcuma longa, has shown cytotoxic effects against a variety of cancers. The aim of this study was to identify potential microRNA (miRNA) mediators of the anticancer effects of curcumin in ovarian cancer cells. Materials and Methods: SKOV3 ovarian cancer cells were treated with curcumin ($10-60{\mu}M$) and miR-9 expression, cell proliferation, and apoptosis were assessed. The effects of miR-9 depletion on curcumin-mediated growth suppression were also examined. Phosphorylation of Akt and forkhead box protein O1 (FOXO1) was measured in cells with miR-9 overexpression or curcumin treatment. Results: Curcumin caused a significant and dose-dependent increase of miR-9 expression in SKOV3 cells, while significantly impeding cell proliferation and stimulating apoptosis. Depletion of miR-9 significantly (p<0.05) attenuated the growth-suppressive effects of curcumin on SKOV3 cells, coupled with reduced percentages of apoptotic cells. In contrast, overexpression of miR-9 significantly enhanced the cleavage of caspase-3 and poly(ADP-ribose) polymerase and promoted apoptotic death in SKOV3 cells. Western blot analysis showed that both miR-9 overexpression and curcumin similarly caused a significant (p<0.05) decline in the phosphorylation of Akt and FOXO1, compared to untreated cells. Conclusions: The present study provided evidence that curcumin exerts its cytotoxic effects against SKOV3 ovarian cancer cells largely through upregulation of miR-9 and subsequent modulation of Akt/FOXO1 axis. Further studies are needed to identify direct targets of miR-9 that mediate the anticancer effects of curcumin in ovarian cancer cells.

Suppression of Inflammatory Responses by Black Rice Extract in RAW 264.7 Macrophage Cells via Downregulation of NF-kB and AP-1 Signaling Pathways

  • Limtrakul, Pornngarm;Yodkeeree, Supachai;Pitchakarn, Pornsiri;Punfa, Wanisa
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4277-4283
    • /
    • 2015
  • Anthocyanin, a phenolic compound, has been reported to have an anti-inflammatory effect against lipopolysaccharide (LPS) induced changes in immune cells. However, little is known about the molecular mechanisms underlying its anti-inflammatory effects. Few research studies have concerned the anti-inflammation properties of colored rice extract as a functional material. Therefore, the purpose of this study was to examine anti-inflammatory effects of the polar fraction of black rice whole grain extracts (BR-WG-P) that features a high anthocyanin content. Our results showed that BR-WG-P significantly inhibited LPS-induced pro-inflammatory mediators, including production of NO and expression of iNOS and COX-2. In addition, secretion of pro-inflammatory cytokines including TNF-${\alpha}$ and IL-6 was also significantly inhibited. Moreover, BR-WG-P and anthocyanin inhibited NF-kB and AP-1 translocation into the nucleus. BR-WG-P also decreased the phosphorylation of ERK, p38 and JNK in a dose dependent manner. These results suggested that BR-WG-P might suppress LPS-induced inflammation via the inhibition of the MAPK signaling pathway leading to decrease of NF-kB and AP-1 translocation. All of these results indicate that BR-WG-P exhibits therapeutic potential associated with the anthocyanin content in the extract for treating inflammatory diseases associated with cancer.

N-(p-Coumaryol)-Tryptamine Suppresses the Activation of JNK/c-Jun Signaling Pathway in LPS-Challenged RAW264.7 Cells

  • Vo, Van Anh;Lee, Jae-Won;Park, Jun-Ho;Kwon, Jae-Hyun;Lee, Hee Jae;Kim, Sung-Soo;Kwon, Yong-Soo;Chun, Wanjoo
    • Biomolecules & Therapeutics
    • /
    • v.22 no.3
    • /
    • pp.200-206
    • /
    • 2014
  • N-(p-Coumaryol) tryptamine (CT), a phenolic amide, has been reported to exhibit anti-oxidant and anti-inflammatory activities. However, the underlying mechanism by which CT exerts its pharmacological properties has not been clearly demonstrated. The objective of this study is to elucidate the anti-inflammatory mechanism of CT in lipopolysaccharide (LPS)-challenged RAW264.7 macrophage cells. CT significantly inhibited LPS-induced extracellular secretion of pro-inflammatory mediators such as nitric oxide (NO) and $PGE_2$, and protein expressions of iNOS and COX-2. In addition, CT significantly suppressed LPS-induced secretion of pro-inflammatory cytokines such as TNF-${\alpha}$ and IL-$1{\beta}$. To elucidate the underlying anti-inflammatory mechanism of CT, involvement of MAPK and Akt signaling pathways was examined. CT significantly attenuated LPS-induced activation of JNK/c-Jun, but not ERK and p38, in a concentration-dependent manner. Interestingly, CT appeared to suppress LPS-induced Akt phosphorylation. However, JNK inhibition, but not Akt inhibition, resulted in the suppression of LPS-induced responses, suggesting that JNK/c-Jun signaling pathway significantly contributes to LPS-induced inflammatory responses and that LPS-induced Akt phosphorylation might be a compensatory response to a stress condition. Taken together, the present study clearly demonstrates CT exerts anti-inflammatory activity through the suppression of JNK/c-Jun signaling pathway in LPS-challenged RAW264.7 macrophage cells.

The Effects of Cortex Mori on NO, $TNF-{\alpha}$ and $IL-1{\alpha}$ production by macrophage (상백피(桑白皮)가 대식세포의 NO, $TNF-{\alpha}$$IL-1{\alpha}$ 생산에 미치는 영향)

  • Ahn, Jae-Kyu;Ahn, Duk-Kyun;Cho, Jae-Chon
    • The Journal of Korean Medicine
    • /
    • v.19 no.2
    • /
    • pp.485-501
    • /
    • 1998
  • Cortex Mori (Moros alba L.), the root bark of mulberry tree has been used as an autiphlogistic, diuretic and expectorant in herval medicine. Recently, a few papers reported that phenolic extract of Cortex Mori had the hypotensive, hypoglycemic, antiviral and anticancer effects, and hot water extract of Cortex Mori(CM) had inhibitory effect on the degranulation and histamine release from activated mast cells. These previous studies suggest a possibility that CM has an antidotal activity against inflammation which was mediated mainly by macrophage-secreting inflammatory factors. This study was performed to evaluate the influences of CM on carrageenan-induced edema in vivo and release of inflammatory mediators such as NO, TNF and IL-1 by macrophages stimulated with LPS or $IFN-{\gamma}$ in vitro. Subcutaneous injections of carrageenan into the mouse paw rapidly induced local edema by increasing vascular permeability, but single intraperitoneal injection of CM extract at 30 minutes before carrageenan suppressed the development of edema. NO and TNF production from macrophage stimulated by LPS or $IFN-{\gamma}$ were significantly suppressed, especially TNF secretion by up to 3-4 folds. LPS stimulated IL-1 production was also inhibited, but not significantly. Cell viability assay verified that the inhibition was not due to general cell toxicity. These results suggest that reduction of NO, TNF and IL-1 production may be one of the means by which CM prevent inflammation associated diseases.

  • PDF

Antioxidant and Anti-inflammatory Activities of Water-soluble Extracts from Different Parts of Kojongsi Persimmon (Diospyros kaki L.) (고종시 감나무 부위별 수용성 추출물의 항산화 및 항염 활성)

  • Jeon, In Hwa;Kang, Hyun Ju;Lee, Hyun-Seo;Shin, Jun Ho;Park, Yong Gyoun;Jeong, Seung-Il;Jang, Seon Il
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.505-510
    • /
    • 2014
  • Kojongsi persimmon (Diospyros kaki L.) is the major cultivar of dried persimmon in Korea. The purpose of this study was to investigate the antioxidant and anti-inflammatory activities of water-soluble extracts from the calyx (PCE), peel (PPE) and leaf (PLE) of Kojongsi persimmon. PCE showed the highest total phenolic and flavonoid contents. In addition, the antioxidant activities (diphenylpicrylhydrazyl, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), nitric oxide and reducing power) of PCE were higher than those of PPE and PLE. Moreover, PCE, PPE and PLE significantly suppressed the production of inflammatory mediators (nitric oxide and $prostaglandinE_2$) and pro-inflammatory cytokines (tumor necrosis factor-${\alpha}$ and interluekin-$1{\beta}$) by lipopolysaccharide-stimulated RAW 264.7 cells in a dose-dependent manner. PCE showed the highest anti-inflammatory activity. Thus, these results suggest that the calyx of Kojongsi persimmon may be highly valuable as a natural product owing to its high-quality functional components as well as its-antioxidant, ant-iinflammatory activities.

Evaluation on Anti-oxidant Activity and Anti-inflammatory Effects for the New Formulation of Gamisoyosan (가미소요산의 새로운 제형에 대한 항산화 활성 및 항염증 효능평가)

  • Choi, Hye-Min;Kim, Se-Jin;Kim, In-Su;Lee, Ji-Beom;Kim, Jong-Beom;Moon, Sung-Ok;Lee, Hwa-Dong
    • The Korea Journal of Herbology
    • /
    • v.31 no.6
    • /
    • pp.1-9
    • /
    • 2016
  • Objectives : Gamisoyosan (GMS) is a useful prescription for treating insomnia, dysmenorrhea and infertility induced by a stress. Also, GMS has been used traditionally to improve systemic circulation and biological energy production. The purpose of this study was to assess the anti-oxidant activity and anti-inflammatory effects of Gamisoyosan Formulation (Soft extract, GMS-SE). Methods : The biological activities such as anti-oxidant and anti-inflammatory effects were measured through cell line-based in vitro assay. We investigated the anti-oxidant properties of GMS-SE on the 1,1-diphenyl-2-picryhydrazyl (DPPH) radical, contents of total flavonoid and polyphenol. GMS-SE compared to butyl hydroxy anizole (BHA). Furthermore, based on this result the anti-inflammatory effects of GMS-SE have verified by mechanism from LPS- treated Raw264.7 macrophages. Results : The anti-oxidant activities of GMS-SE increased markedly, in a dose-dependent manner. The GMS-SE showed significant scavenging activity (GMS-SE $500{\mu}g/m{\ell}$ : $32.77{\pm}1.65%$, GMS-SE $1000{\mu}g/m{\ell}$ : $45.06{\pm}1.04%$ and BHA $100{\mu}g/m{\ell}$ : $39.25{\pm}2.41%$ for DPPH assay). and, The total phenolic compound and flavonoids contents of GMS-SE were $73.93{\pm}6.87{\mu}g/mg$ and $698.75{\pm}6.78{\mu}g/mg$. GMS-SE which is LPS has diminished in the LPS-induced release of inflammatory mediators (NO, iNOS, COX2 and PGE2) and pro-inflammatory cytokines (TNF-${\alpha}$, IL-6 and IL-$1{\beta}$) from the RAW264.7 macrophages. Moreover, GMS-SE inhibited the activation of phosphorylation of p38 and ERK MAPKs by induced LPS. Conclusion : The present results indicate that GMS-SE has an anti-oxidant and anti-inflammatory properties, therefore may be beneficial in diseases which related to oxidative stress-mediated inflammatory disorders.

Effect of Anti-inflammation on Oryeong-san Formulation for Mix Extract Tablet (오령산 정제 개발 및 항염증 효과)

  • Kim, Se Jin;Leem, Hyun Hee;Nam, Won Hee;Son, Su Mi;Choi, Hye Min;Kim, Myung Jin;Kim, Jung Ok;Lee, Hwa Dong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.6
    • /
    • pp.348-354
    • /
    • 2020
  • Oryeong-san (ORS) is a traditional Korean herbal medicine widely used for renal associated diseases, composed of five medicine herbs; Atractylodes japonica Koidzumi, Cinnamomum cassia Presl, Polyporus umbellatus Fries, Poria cocos Wolf and Alisma orientale Juzepzuk. We studied to improve the convenience of intake and portability by developing modernized dosage forms, and examined the effect on anti-inflammation of ORS. In order to develop the tablet formulation of ORS (ORS-F), the tablets were evaluated on the basis of physical characteristics include diameter, thickness, weight variation, hardness, friability and disintegration. To analyze the marker components of ORS-F, eight index markers from five herbal medicines were chosen. And the method using high performance liquid chromatography (HPLC) with diode-array detector method was established for the simultaneous analysis. The biological activities were examined the effect of ORS-F on pro-inflammation mediated by LPS-stimulation. The production of nitric oxide (NO) and cytokines were determined by reacting cultured medium with griess reagent and enzyme-linked immunosorbent assay (ELISA). The expression of cyclooxygenase-2 (COX-2) and inducible NO synthase (iNOS) were investigated by Western blot and RT-PCR. The anti-oxidant activities of OJS-F increased markedly, in a dose-dependent manner. and, The total phenolic compound and flavonoids contents of OJS-F were 10.20±0.09 ㎍/㎎ and 12.86±0.86 ㎍/㎎. OJS-F which is LPS has diminished in the LPS-induced release of inflammatory mediators (NO, iNOS, COX2 and PGE2) and pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) from the RAW264.7 macrophages. Therefore, the developed formulation for tablet of ORS-F provide efficiency and usability, and indicated effect of anti-inflammation.

Induction of Phase I, II and III Drug Metabolism/Transport by Xenobiotics

  • Xu Chang Jiang;Li Christina YongTao;Kong AhNg Tony
    • Archives of Pharmacal Research
    • /
    • v.28 no.3
    • /
    • pp.249-268
    • /
    • 2005
  • Drug metabolizing enzymes (DMEs) play central roles in the metabolism, elimination and detoxification of xenobiotics and drugs introduced into the human body. Most of the tissues and organs in our body are well equipped with diverse and various DMEs including phase I, phase II metabolizing enzymes and phase III transporters, which are present in abundance either at the basal unstimulated level, and/or are inducible at elevated level after exposure to xenobiotics. Recently, many important advances have been made in the mechanisms that regulate the expression of these drug metabolism genes. Various nuclear receptors including the aryl hydrocarbon receptor (AhR), orphan nuclear receptors, and nuclear factor-erythoroid 2 p45-related factor 2 (Nrf2) have been shown to be the key mediators of drug-induced changes in phase I, phase II metabolizing enzymes as well as phase III transporters involved in efflux mechanisms. For instance, the expression of CYP1 genes can be induced by AhR, which dimerizes with the AhR nuclear translocator (Arnt) , in response to many polycyclic aromatic hydrocarbon (PAHs). Similarly, the steroid family of orphan nuclear receptors, the constitutive androstane receptor (CAR) and pregnane X receptor (PXR), both heterodimerize with the ret-inoid X receptor (RXR), are shown to transcriptionally activate the promoters of CYP2B and CYP3A gene expression by xenobiotics such as phenobarbital-like compounds (CAR) and dexamethasone and rifampin-type of agents (PXR). The peroxisome proliferator activated receptor (PPAR), which is one of the first characterized members of the nuclear hormone receptor, also dimerizes with RXR and has been shown to be activated by lipid lowering agent fib rate-type of compounds leading to transcriptional activation of the promoters on CYP4A gene. CYP7A was recognized as the first target gene of the liver X receptor (LXR), in which the elimination of cholesterol depends on CYP7A. Farnesoid X receptor (FXR) was identified as a bile acid receptor, and its activation results in the inhibition of hepatic acid biosynthesis and increased transport of bile acids from intestinal lumen to the liver, and CYP7A is one of its target genes. The transcriptional activation by these receptors upon binding to the promoters located at the 5-flanking region of these GYP genes generally leads to the induction of their mRNA gene expression. The physiological and the pharmacological implications of common partner of RXR for CAR, PXR, PPAR, LXR and FXR receptors largely remain unknown and are under intense investigations. For the phase II DMEs, phase II gene inducers such as the phenolic compounds butylated hydroxyanisol (BHA), tert-butylhydroquinone (tBHQ), green tea polyphenol (GTP), (-)-epigallocatechin-3-gallate (EGCG) and the isothiocyanates (PEITC, sul­foraphane) generally appear to be electrophiles. They generally possess electrophilic-medi­ated stress response, resulting in the activation of bZIP transcription factors Nrf2 which dimerizes with Mafs and binds to the antioxidant/electrophile response element (ARE/EpRE) promoter, which is located in many phase II DMEs as well as many cellular defensive enzymes such as heme oxygenase-1 (HO-1), with the subsequent induction of the expression of these genes. Phase III transporters, for example, P-glycoprotein (P-gp), multidrug resistance-associated proteins (MRPs), and organic anion transporting polypeptide 2 (OATP2) are expressed in many tissues such as the liver, intestine, kidney, and brain, and play crucial roles in drug absorption, distribution, and excretion. The orphan nuclear receptors PXR and GAR have been shown to be involved in the regulation of these transporters. Along with phase I and phase II enzyme induction, pretreatment with several kinds of inducers has been shown to alter the expression of phase III transporters, and alter the excretion of xenobiotics, which implies that phase III transporters may also be similarly regulated in a coordinated fashion, and provides an important mean to protect the body from xenobiotics insults. It appears that in general, exposure to phase I, phase II and phase III gene inducers may trigger cellular 'stress' response leading to the increase in their gene expression, which ultimately enhance the elimination and clearance of these xenobiotics and/or other 'cellular stresses' including harmful reactive intermediates such as reactive oxygen species (ROS), so that the body will remove the 'stress' expeditiously. Consequently, this homeostatic response of the body plays a central role in the protection of the body against 'environmental' insults such as those elicited by exposure to xenobiotics.

Anti-Inflammatory Effect of Ethanol Extract from Onion (Allium cepa L.) Peel on Lipopolysaccharide-Induced Inflammatory Responses in RAW 264.7 Cells and Mice Ears (LPS로 유도된 RAW 264.7 세포와 마우스 귀 조직에 대한 양파(Allium cepa L.) 껍질 에탄올 추출물의 항염증 효과)

  • Ahn, Na-Kyung;Kang, Bo-Kyeong;Kim, Koth-Bong-Woo-Ri;Kim, Min-Ji;Bae, Nan-Young;Park, Ji-Hye;Park, Sun-Hee;Ahn, Dong-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.11
    • /
    • pp.1612-1620
    • /
    • 2015
  • Inflammation is a complex process involving a variety of immune cells, which defend the body from harmful stimuli. However, pro-inflammatory cytokines and inflammatory mediators can also exacerbate diseases such as cancer. Onion peel contains several phenolic compounds, including quercetin at an amount 20 times greater in peel than edible flesh. Therefore, in this study, the anti-inflammatory effects of onion peel ethanol extract (OPEE) were investigated lipopolysaccharide-induced inflammatory response. In our results, NO production decreased in a dose-dependent manner. Secretion of IL-6, $TNF-{\alpha}$, and $IL-1{\beta}$ was suppressed by 44%, 53%, and 60% respectively, at $100{\mu}g/mL$. Moreover, OPEE also suppressed expression of COX-2, iNOS, $NF-{\kappa}B$, and MAPKs in a dose-dependent manner. Formation of mice ear edema was reduced at the highest dose tested compared to the control, and reduction of ear thickness was observed in the histological analysis as well. In the acute toxicity test, no morality was observed in mice administered 5,000 mg/kg body weight of OPEE over a 2-week observation period. These results suggest that OPEE may have significant effects on inflammatory factors and be a potential anti-inflammatory material.