• Title/Summary/Keyword: Phenolic

Search Result 3,498, Processing Time 0.031 seconds

Effect of Shading Practices on the Chemical Compounds and Antioxidant in Aruncus dioicus (차광재배가 눈개승마(Aruncus dioicus var. kamtschaticus)의 성분 및 항산화 특성에 미치는 영향)

  • Kwon Jeong-Woo;Park Jae-Ho;Kwon Ki-Soo;Kim Dae-Seup;Jeong Jin-Boo;Lee Hee-Kyung;Sim Young-Eun;Kim Mi-Suk;Youn Ji-Young;Chung Gyu-Young;Jeong Hyung-Jin
    • Korean Journal of Plant Resources
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • This study was conducted to determine chemical compounds and antioxidant in Aruncus dioicus. Further, effects of cultural practices such as the shading conditions on the general compounds, essential oils and antioxidants. The chemical compounds and antioxidant activity of edible extracts on the shading cultivation and harvesting time were measured by crude fiber, pigments, higher fatty acids, essential oils and DPPH free radical scavenging ability and activities of SOD and POD in edible shooting parts of Aruncus dioicus. The contents of crude fiber, total chlorophyll and total carotenoids in extracts of edible shooting by shading cultivation and later harvesting were higher than those of non-shading cultivation and early harvesting. Phenolic compounds such as benzoic acid were identified as the aromatic compounds in the edible extracts of Aruncus dioicus. The contents of azulene, benzaldehyde and linalool among those compounds on the cultivation conditions increased in shading cultivation. $IC_{50}$ values of DPPH free radical scavenging activities were high from 6.644 to $14.499{mu}g/m{\ell}$ in extracts of edible parts and those of edible shooting parts was high such as edible shooting cultivated by 60% shading, 30% shading and non-shading, respectively. The activity of POD and SOD in seeds was lower than that of edible shooting and that by shading cultivation was high in extracts cultivated by non-shading. POD activity of extracts on harvesting time was high in earlier harvesting but SOD activity was low. The numbers of isozyme pattern of POD and SOD in seedling showed 7 bands and 3 bands, respectively, especially, bands of POD and SOD in the first year-growing plant did not show and show a difference according to plant positions, respectively.

Induction of Phase I, II and III Drug Metabolism/Transport by Xenobiotics

  • Xu Chang Jiang;Li Christina YongTao;Kong AhNg Tony
    • Archives of Pharmacal Research
    • /
    • v.28 no.3
    • /
    • pp.249-268
    • /
    • 2005
  • Drug metabolizing enzymes (DMEs) play central roles in the metabolism, elimination and detoxification of xenobiotics and drugs introduced into the human body. Most of the tissues and organs in our body are well equipped with diverse and various DMEs including phase I, phase II metabolizing enzymes and phase III transporters, which are present in abundance either at the basal unstimulated level, and/or are inducible at elevated level after exposure to xenobiotics. Recently, many important advances have been made in the mechanisms that regulate the expression of these drug metabolism genes. Various nuclear receptors including the aryl hydrocarbon receptor (AhR), orphan nuclear receptors, and nuclear factor-erythoroid 2 p45-related factor 2 (Nrf2) have been shown to be the key mediators of drug-induced changes in phase I, phase II metabolizing enzymes as well as phase III transporters involved in efflux mechanisms. For instance, the expression of CYP1 genes can be induced by AhR, which dimerizes with the AhR nuclear translocator (Arnt) , in response to many polycyclic aromatic hydrocarbon (PAHs). Similarly, the steroid family of orphan nuclear receptors, the constitutive androstane receptor (CAR) and pregnane X receptor (PXR), both heterodimerize with the ret-inoid X receptor (RXR), are shown to transcriptionally activate the promoters of CYP2B and CYP3A gene expression by xenobiotics such as phenobarbital-like compounds (CAR) and dexamethasone and rifampin-type of agents (PXR). The peroxisome proliferator activated receptor (PPAR), which is one of the first characterized members of the nuclear hormone receptor, also dimerizes with RXR and has been shown to be activated by lipid lowering agent fib rate-type of compounds leading to transcriptional activation of the promoters on CYP4A gene. CYP7A was recognized as the first target gene of the liver X receptor (LXR), in which the elimination of cholesterol depends on CYP7A. Farnesoid X receptor (FXR) was identified as a bile acid receptor, and its activation results in the inhibition of hepatic acid biosynthesis and increased transport of bile acids from intestinal lumen to the liver, and CYP7A is one of its target genes. The transcriptional activation by these receptors upon binding to the promoters located at the 5-flanking region of these GYP genes generally leads to the induction of their mRNA gene expression. The physiological and the pharmacological implications of common partner of RXR for CAR, PXR, PPAR, LXR and FXR receptors largely remain unknown and are under intense investigations. For the phase II DMEs, phase II gene inducers such as the phenolic compounds butylated hydroxyanisol (BHA), tert-butylhydroquinone (tBHQ), green tea polyphenol (GTP), (-)-epigallocatechin-3-gallate (EGCG) and the isothiocyanates (PEITC, sul­foraphane) generally appear to be electrophiles. They generally possess electrophilic-medi­ated stress response, resulting in the activation of bZIP transcription factors Nrf2 which dimerizes with Mafs and binds to the antioxidant/electrophile response element (ARE/EpRE) promoter, which is located in many phase II DMEs as well as many cellular defensive enzymes such as heme oxygenase-1 (HO-1), with the subsequent induction of the expression of these genes. Phase III transporters, for example, P-glycoprotein (P-gp), multidrug resistance-associated proteins (MRPs), and organic anion transporting polypeptide 2 (OATP2) are expressed in many tissues such as the liver, intestine, kidney, and brain, and play crucial roles in drug absorption, distribution, and excretion. The orphan nuclear receptors PXR and GAR have been shown to be involved in the regulation of these transporters. Along with phase I and phase II enzyme induction, pretreatment with several kinds of inducers has been shown to alter the expression of phase III transporters, and alter the excretion of xenobiotics, which implies that phase III transporters may also be similarly regulated in a coordinated fashion, and provides an important mean to protect the body from xenobiotics insults. It appears that in general, exposure to phase I, phase II and phase III gene inducers may trigger cellular 'stress' response leading to the increase in their gene expression, which ultimately enhance the elimination and clearance of these xenobiotics and/or other 'cellular stresses' including harmful reactive intermediates such as reactive oxygen species (ROS), so that the body will remove the 'stress' expeditiously. Consequently, this homeostatic response of the body plays a central role in the protection of the body against 'environmental' insults such as those elicited by exposure to xenobiotics.

Antioxidant and antidiabetic activities of various solvent extracts from Stachys sieboldii Miq. (용매별 초석잠 추출물의 항산화 및 항당뇨 활성)

  • Kang, Jae-Ran;Kang, Min-Jung;Shin, Ji-Hyeon;Park, Ji-Hye;Kim, Dong-il;Chung, Sang-Yong;Shin, Jung-Hye
    • Food Science and Preservation
    • /
    • v.24 no.5
    • /
    • pp.615-622
    • /
    • 2017
  • This study investigated the antioxidant and antidiabetic activities of Stachys sieboldii Miq. extracts by solvents (water, ethanol, butanol, chloroform, and hexane). The contents of total polyphenols (7.18-37.25 mg/g) and flavonoids (0.21-5.21 mg/g) in extracts from Stachys sieboldii Miq. showed a significant difference dependent on the extraction solvents, butanol > ethanol > water > chloroform > hexane. Antioxidant activities by DPPH and ABTS radical scavenging were increased in a dose-dependent manner. These activity trends associated with the extraction solvent were different at each concentration, but resembled phenolic compound contents trend, generally. FRAP value increased in a dose-dependent manner, but there was a difference in radical scavenging activities when comparing between extraction solvents by butanol > ethanol > hexane > chloroform > water on all concentrations. The trend of ${\alpha}$-amylase inhibition of extracts from $1,000{\mu}g/mL$ to $2,000{\mu}g/mL$ was not affected as enzyme activity is promoted and not inhibited. The inhibition of ${\alpha}$-glucosidase was increased in a dose-dependent manner without water extracts, the activity on hexane extracts was higher than others per the extraction solvent. ${\alpha}$-Glucosidase inhibition of hexane extracts showed 57.76% at $250{\mu}g/mL$, which is 2.8 times higher than the second highest chloroform extract (20.65%). From these results, we presume that the active ingredients of Stachys sieboldii Miq. is different according to the extraction solvent and also the activity is different by these major functional groups.

Optimization of microwave-assisted extraction process for blue honeysuckle (Lonicera coerulea L.) using response surface methodology (반응표면분석법을 이용한 댕댕이 기능성성분의 마이크로웨이브추출조건 최적화)

  • Park, Daehee;Lee, Jae-Jun;Park, Jongjin;Park, Sanghwan;Lee, Wonyoung
    • Food Science and Preservation
    • /
    • v.24 no.5
    • /
    • pp.623-630
    • /
    • 2017
  • Functional compounds including flavonoids, anthocyanins, polyphneols and antioxidants were extracted from blue honeysuckle (Lonicera caerulea L.) using highly efficient microwave-assisted extraction. And extraction process was modeled and optimized according to response surface methodology (RSM). The independent variables ($X_n$) were ethanol concentration ($X_1$: 0, 25, 50, 75, 100%), irradiation time ($X_2$: 1, 3, 5, 7, 9 min), and microwave power ($X_3$: 60, 120, 180, 240, 300 W). Dependent variables ($Y_n$) were total flavonoid contents ($Y_1$), total anthocyanin contents ($Y_2$), total polyphenol contents ($Y_3$) and antioxidant activity ($Y_4$). Four-dimensional response surface plots were generated based on the fitted second-order polynomial models to get optimal conditions. Estimated optimal conditions for 4 responses were ethanol concentration of 54-72%, irradiation time of 7.1-7.6 min, and microwave power of 243-251 W. Ridge analysis predicted the maximal responses of total flavonoid content, total anthocyanin content, total polyphenol content and antioxidant activity were 38.00 mg RE/g, 6.80 mg CGE/g, 14.90 mg GAE/g, 89.10%, respectively. Verification experiment was carried out at predicted optimal conditions and experimental values for total flavonoid content, total anthocyanin content, total polyphenol content and antioxidant activity were 38.10 mg RE/g, 6.72 mg CGE/g, 14.91 mg GAE/g and 89.13%, respectively. No significant difference was observed between predicted and experimental values, indicating good fitness of fitted model and successful application of RSM.

Quality characteristics of fermented vinegar prepared with Seomaeyaksuk (Artemisia argyi H.) extract (섬애약쑥 주정 추출물로 제조한 발효식초의 품질특성)

  • Shin, Ji Hyeon;Kang, Min Jung;Byun, Hee Uk;Bea, Won Yoel;Shin, Jeong Yeon;Seo, Weon Tack;Choi, Jine Shang;Shin, Jung Hye
    • Food Science and Preservation
    • /
    • v.24 no.5
    • /
    • pp.647-657
    • /
    • 2017
  • This study was carried out to investigate the quality characteristics of vinegars containing jaceosidin and eupatilin using Artemisia argyi H. ethanol extract (AEE). 10% malt extract (ME) and water extract of Artemisia argyi H. (AWE) were also prepared for vinegar production. Three kinds of materials were mixed in the same amount to prepare vinegar as follows; CO (ME, water, 18% edible ethanol), SE (ME, water, and AEE), SW (ME, AWE, and 18% edible ethanol) and SM (ME, AWE, AEE). All samples were fermented by Acetobacter pasteurianus A8 at $30^{\circ}C$ for 25 days and analyzed at 10, 15, 20 and 25 days. The pH decreased significantly during the fermentation. pH was lower in SE and SM than CO and SW. The acidity increased significantly during the fermentation, and was highest in SM (4.44%) at 25 days of fermentation. The concentration of acetic acid was higher than other organic acids for all vinegars. Jaceosidin and eupatilin were not detected in both CO and SW, but both were detected in the SE and SM. At 25 days of fermentation, jaceosidin and eupatilin concentrations in SE and SM were 6.49-6.88 mg/kg and 2.23-2.24 mg/kg, respectively. From these results, we confirmed that production of vinegar containing jaceosidin, eupatilin and phenolic compounds can be prepared by using Artemisia argyi H. edible ethanol extract.

Antioxidant Activities of Fractions Obtained from Dryopteris crassirhizoma, D. nipponensis and Polystichum lepidocaulon (관중, 참지네고사리 및 더부살이고사리 분획물의 항산화 활성)

  • Kim, Na-Rae;Kwon, Hyuk-Joon;Cho, Ju-Sung;Lee, Cheol-Hee
    • Korean Journal of Plant Resources
    • /
    • v.25 no.2
    • /
    • pp.176-183
    • /
    • 2012
  • This study was carried out to develop ferns as the natural antioxidant materials by graduating and extracting fronds of $Dryopteris$ $crassirhizoma$, $Dryopteris$ $nipponensis$, and $Polystichum$ $lepidocaulon$, which belong to Dryopteridaceae, using solvent, and analyzing the antioxidant effect of each fraction. The n-butanol fraction of $D.$ $crassirhizoma$ (550.0 $mg{\cdot}g^{-1}$), the ethyl acetate fraction of $D.$ $nipponensis$ (374.8 $mg{\cdot}g^{-1}$), and the n-butanol fraction of $P.$ $lepidocaulon$ (781.8 $mg{\cdot}g^{-1}$) showed relatively higher total contents of polyphenol. The chloroform fraction of $D.$ $crassirhizoma$ (72.9 $mg{\cdot}g^{-1}$), and the n-hexane fraction of $D.$ $nipponensis$ (72.9 $mg{\cdot}g^{-1}$) and $P.$ $lepidocaulon$ (154.5 $mg{\cdot}g^{-1}$) contained relatively higher total contents of flavonoids. DPPH radical scavenging activity was most excellent in the n-butanol fraction of $D.$ $crassirhizoma$ ($RC_{50}=0.02mg{\cdot}mL^{-1}$) and $P.$ $lepidocaulon$ ($RC_{50}=0.04mg{\cdot}mL^{-1}$), and the water fractions of $D.$ $nipponensis$ ($RC_{50}=0.01mg{\cdot}mL^{-1}$). ABTS radical scavenging activity was potent in the n-hexane and n-butanol fractions of $D.$ $crassirhizoma$ (each $RC_{50}=0.02mg{\cdot}mL^{-1}$), the ethyl acetate fraction of $D.$ $nipponensis$ ($RC_{50}=0.03mg{\cdot}mL^{-1}$), and the n-butanol fraction of $P.$ $lepidocaulon$ ($RC_{50}=0.06mg{\cdot}mL^{-1}$). There was the large amount of total polyphenol content in the n-butanol fraction of $D.$ $crassirhizoma$ and $P.$ $lepidocaulon$, and their radical scavenging activities were potent. Therefore, it was thought that biologically active substances of each fraction layer are required to be analyzed and used.

Antioxidant activity of Bamboo powder and its immunoreactivity in the pig (대나무 분말의 항산화력과 돼지의 면역 활성에 미치는 영향)

  • Song, Yuno;Chu, Gyo-Moon;Jang, Sun-Hee;Goo, Ae-Jin;Ko, Yeoung-Gyu;Ha, Ji Hee;Lee, Jae-Young;Kang, Suk-Nam;Song, Young-Min;Cho, Jae-Hyeon
    • Korean Journal of Veterinary Service
    • /
    • v.37 no.2
    • /
    • pp.111-122
    • /
    • 2014
  • The present study was designed to explore the antioxidant effect of Bamboo powder and its immunoreactivity in pigs. We investigated the functional properties of Bamboo extracts by means of measuring the contents of total polyphenols and flavonoid as well as determining ABST, DPPH radical scavenging activity, and hydroxyl radical scavenging activity and anticancer activity. The total phenolic compound and flavonoids contents of Bamboo extracts were 171.25 mg/g and 127.5 mg/g, respectively. The DPPH radical, hydroxyl radical, ABST radical scavenging activity of Bamboo extracts were 17.3%, 12.5% and 21.5%, respectively. Evidenced by MTT and cell cycle assay, Bamboo dose-dependently inhibited the cell proliferation and induced G0/G1-phase arrest in CHO cells at concentrations of 100, 250, and 500 ${\mu}g/ml$ Bamboo extracts. More than 80% of apoptotic cells were observed by staining with annexin V in 500 ${\mu}g/ml$ Bamboo-treated CHO cells, indicating that Bamboo had potent anticancer activities. Next, to investigate the effect of Bamboo on cytokine, immunoglobulin concentration, and blood compositions, flatting pigs were fed with Bamboo powder for 38 days. Flatting pigs were divided into 4 groups; basal diet (control), basal diet supplemented with 1% Bamboo powder (T1), 2% Bamboo powder (T2), and 3% Bamboo powder (T3). The level of hemoglobin increased in the all Bamboo-fed groups compared with the normal control group. In particular, platelet levels in the all Bamboo-treated groups increased by approximately 90% compared with the levels from pig on a normal control. Serum levels of immunoglobulins (IgG, IgA) in the pigs fed Bamboo powder were modestly increased, and the interferon-${\gamma}$ level also was strongly increased in 2% or 3% Bamboo-fed groups compared with the levels in control groups. Together, these results demonstrated that Bamboo extracts had an effective capacity of scavenging for ABTS, DPPH, and hydroxyl radicals and showed correlation with potent phenol and flavonoid contents, thus suggesting its antioxidant potential. Moreover, administration of Bamboo in 2~3% improved blood parameters and platelets, and especially immunity-related ones such as IgG, IgA, and interferon-${\gamma}$, leading to be potential feed additives in flatting pigs.

Supplementation Effect of Onion Peel Extracts on Small Intestine of Obese Mice (양파껍질 추출물 급여가 비만 유도쥐의 소장내 변화에 미치는 영향)

  • Pak, Jae-In;Kim, Yoon-Woo;Seo, Te-Su;Jang, Aera
    • Journal of Life Science
    • /
    • v.22 no.11
    • /
    • pp.1477-1486
    • /
    • 2012
  • This study was performed to determine the effect of onion peel extract using 70% ethanol and 95% ethanol on its anti-oxidation activity, small intestine length, and intestinal villi of high-fat fed mice. Five percent of each onion peel extract using 70% and 95% ethanol showed significant decrease of E. coli and Listeria monocytogenes. Total phenolic contents of onion peel extracts using 70% and 95% ethanol were $166.89{\pm}0.03$ mg/g and $160.89{\pm}0.13$ mg/g, respectively. In anti-oxidation activity, DPPH radical scavenging activity and SOD-like activity of onion peel extracts were higher at 100 ug/ml concentration. The obese mice were fed high-fat diets supplemented by 1, 3, and 5% of the onion peel extracts using 70% and 95% ethanol for 4 weeks. Body weight, feed intake, feed efficiency, small intestine weight, length, villi's length, and number of bacteria in intestine were determined. Body weight of mice fed 5% of onion extracts using both 70% and 95% ethanol was significantly lower than that of control (p<0.05). However, feed intake was increased in mice fed 5% of onion extracts at both fermented ethanol levels. Small intestine weight and length of mice showed no significant change with supplementation of the onion peel extracts. However, length of small intestine villi was significantly longer than that of control. Total bacteria counts of Cl. Perfringenes and E. coli in small intestine of the mice were significantly reduced by supplementation of 5% of onion extract using ethanol, while lactic acid bacteria were increased. These results suggest that 5% of onion peel extracts using ethanol at either 70% or 95% concentration have potential to be used as an additive for body weight control and enhanced gut health; however, more research on its effectiveness is needed.

Effect of Pine (Pinus densiflora) Needle Hot Water Extract on Antioxidant Activity in Rats Treated with Carbon Tetrachloride (적송잎 열수 추출물이 사염화탄소를 투여한 흰쥐의 항산화 활성에 미치는 영향)

  • Park, Yong-Soo;Park, Mi-Ra;Jeon, Min-Hee;Hwang, Hyun-Jung;Kang, Min-Suk;Kim, Bo-Kyung;Kim, Sung-Gu;Lee, Sang-Hyeon;Kim, Mi-Hyang
    • Journal of Life Science
    • /
    • v.21 no.4
    • /
    • pp.604-609
    • /
    • 2011
  • Pine (pinus densiflora) needles have long been used as a traditional health-promoting medicinal food in Korea. This study was conducted to investigate the effects of pine needle extracts on the hepatic antioxidant system in the damaged liver of carbon tetrachloride ($CCl_4$)-treated rats. Nine-week-old Sprague Dawley rats were divided into four groups: normal group (NOR), $CCl_4$-treated group (CCL), pine needle hot water extract and $CCl_4$-treated group (CCL-P), and Vitamin C and $CCl_4$-treated group (CCL-V). The enzyme activities and antioxidant effects of the pine needle hot water extracts were investigated at the levels of liver homogenates and serum of rats intoxicated with $CCl_4$. Serum GOT and GPT activities by $CCl_4$ treatment increased compared to those of the NOR group. However, they tended to decrease in the hot water extract-administered group. Liver SOD activity in the CCL group was significantly lower than the NOR group (p<0.05). However, they increased in the CCL-P group compared to the CCL group. Further, the CAT and GPx activities of serum treated with $CCl_4$ were higher compared to those of the NOR group but lower in the CCL-P group compared to CCL group. These results suggest that pine needle hot water extract increases antioxidant activities.

Effect of Oxalic Acid Pretreatment on Yellow Poplar (Liriodendron tulipifera) for Ethanol Production (바이오에탄올 생산에 적합한 백합나무(Liriodendron tulipifera)의 oxalic acid 전처리 효과 탐색)

  • Kim, Hye-Yun;Lee, Jae-Won;Jeffries, Thomas W.;Gwak, Ki-Seob;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.397-405
    • /
    • 2009
  • In this study, we investigated the potential of producing bioethanol from Liriodendron tulipifera by using oxalic acid pretreatment. Amounts of fermentable sugars, mostly xylose and glucose, in the liquid fraction (hydrolysate) was $40.22g/{\ell}$ after the biomass was pretreated with 0.037 g/g of oxalic acid for 20 minutes at $160^{\circ}C$. Production amounts of ethanol was $8.6g/{\ell}$ from the 72 hours of simultaneous saccharification and fermentation (SSF) on solid fraction of the pretreated sample. At the same condition, when the reaction time increased to 40 minutes, $32.66g/{\ell}$ of fermentable sugars in the hydrolysate and $9.5g/{\ell}$ of ethanol was produced from the process of pretreatment and SSF. As a result of analyzing the fermentation inhibitors, such as acetic acid, 5-HMF, furfural and total phenolic compounds, as the reaction time increased, the amount of the fermentation inhibitors in the hydrolysate increased. Production of the fermentation inhibitors was more affected by initial concentration of oxalic acid rather than reaction time. $3.39{\sim}5.78g/{\ell}$ of acetic acid was produced by pretreatment with 0.013 g/g of oxalic acid, and the amount of furfural produced by decomposition of xylose was 2~3 times higher than the amount of 5-HMF produced by decomposition of glucose. All the hydrolysates contained more than $5g/{\ell}$ of total phenols considered as the degradation product of lignin. Therefore, by analyzing the amount of fermentable sugars and fermentation inhibitors in the hydrolysate, and producing ethanol from SSF of solid fraction of the pretreated sample, the biomass pretreated with 0.037 g/g of oxalic acid for 20 minutes at $160^{\circ}C$ can be expected to produce the most ethanol.