• Title/Summary/Keyword: Phenolic

Search Result 3,511, Processing Time 0.034 seconds

The Physical Properties of Wheat Flour Extrudates with Added Phenolic Acids (페놀산 첨가 밀가루 압출성형물의 물리적 특성)

  • Koh, Bong-Kyung
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.17 no.3
    • /
    • pp.379-383
    • /
    • 2007
  • The effects of phenolic acids on the physical properties of wheat flour extrudate were investigated. Ferulic acid, fumaric acid, and p-coumaric acid were mixed with hard wheat flour, respectively, and extruded under a twin screw extruder. We found that by adding the phenolic acids, longitudinal expansion at the die increased, textural hardness decreased, and the water absorption capacity of the extrudate decreased. The results showed that the addition of phenolic acids produced a softer textured, more longitudinally puffed and hydrophobic extrudate compared to the control extrudate. Moreover, the addition of phenolic acids did not significantly affect the color of the extrudate: oxidative browning of the phenolic acids was not observed, due to inactivation of the browning enzymes under the hot temperature and reduced oxygen conditions of the extrusion process.

  • PDF

Isolation and Identification of Free Phenolic Acids in Korean Ginseng (인삼의 유리 페놀성 분획중 phenolic acid의 순수분리 동정)

  • Kim, Man-Wook;Wee, Jae-Joon;Park, Jong-Dae
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.392-396
    • /
    • 1987
  • A method for isolation of some phenolic acids from Korean ginseng(Panax ginseng C.A.Meyer)was studied using silicic acid column chromatography. preparative thin layer chromatography and high performance liquid chromatography. Two phenolic compounds were isolated and identified as ferulic acid, mp $156-157^{\circ}C$ and vanillic acid. mp $154-156^{\circ}C$ by spectral data of Mass and NMR spectroscopy.

  • PDF

Transglycosylation of Phenolic Compounds by the Recombinant Sucrose Phosphorylase Cloned from Bifidobacterium longum (Bifidobacterium longum 유래 재조합 Sucrose Phosphorylase에 의한 Phenolic Compound 배당체 생산)

  • 권태연;이종훈
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.3
    • /
    • pp.286-289
    • /
    • 2004
  • Transglycosylation from sucrose to phenolic compounds by the recombinant sucrose phosphorylase from Bifidobacterium longum was studied. HPLC analysis revealed that the enzyme transferred glucosyl residue of sucrose to 1,2-dihydroxybenzene, 1,4-dihydroxybenzene, 1,2,3-trihydroxybenzene, and 2-hydroxybenzyl alcohol. The enzyme could transfer the glucosyl moiety of sucrose to phenolic compounds which have phenolic OH or alcoholic (hydroxymethyl) OH group.

$^{13}C-Nuclear$ Magnetic Resonance of Phenolic Compounds (II) -A Study on the Chemical Shifts of the Phenolic Coumarine Derivatives- (Phenol성(性) 화합물(化合物)의 $^{13}C$-핵자기(核磁氣) 공명(共鳴)(II) -Phenol 성(性) Coumarine 유도체(誘導體)의 Chemical Shift에 관(關)하여-)

  • Ahn, Byung-Zun
    • Korean Journal of Pharmacognosy
    • /
    • v.8 no.1
    • /
    • pp.23-29
    • /
    • 1977
  • The $^{13}C-chemical\;shifts$ of the phenolic coumarine derivatives, aesculetin, daphnetin and herniarin were studied on the basis of my previous report. All spectral data found in this report could be utilized to the structure elucidation of the unknown phenolic coumarine derivatives and other phenolic compounds. In addition, it is suggested that a long range coupling may occur in the following structure as represented by arrow.

  • PDF

Environmental Adaptability of Eupatorium rugosum : Relationship between Accumulation of Heavy Metals and Phenolic Compounds (서양등골나물의 환경적응력 : 중금속 축적과 Phenolic Compounds의 관계)

  • 김용옥;박종야;이호준
    • The Korean Journal of Ecology
    • /
    • v.26 no.1
    • /
    • pp.5-12
    • /
    • 2003
  • Seed germination rate and seedling growth were measured on 6 different species(Phytolacca americana, Eupatorium rugosum, Rumex acetocella, Echinochloa crusgalli, Cassia mimosoides var. nomame, Setaria viridis) treated with leaf extract of E. rugosum. Total phenolic compound and heavy metal were analyzed on leaf and soil with and without E. rugosum. The growth of P. americana seedlings were stimulated by 10% and 25% of E. rugosum water extract treatment. The content of total phenolic compounds in soil was lower than that of leaf extract, and 25% was confirmed as threshold concentration in natural systems because the total phenolic compounds were not significantly different between the control soils and the soil treated with 10%, and 25% extract. Total phenolic compound concentrations of the leaf extracts were highest (1.66 mg/l) with E. rugosum grown under the Quercus forest canopy and lowest (1.09 mg/l) for the plant grown in the mixed forest edge. Leaf extracts of plants selected in different sampling sites (Forest interior, Forest edge, under Pinus Canopy and Quercus Canopy) were significant, while soil extracts were not. Seed germination of R. acetocella and S. viridis were significantly inhibited at over 50% concentrations of E. rugosum, but C. mimosoides var. nomame was not affected at any concentration. The radicle and shoot growth of the native species group were reduced two times more than those of the exotic species group by the treatment of extracts. Especially, the seed germination percentage and dry weight of E. rugosum were greater than those of the control group by treatments with extracts of 10% and 25%. Analysis of aqueous extracts from E. rugosum by HPLC identified 6 phenolic compounds: caffeic acid (460.9 mg/l), benzoic acid (109.7 mg/l), protocatechuic acid (7.3 mg/l), ρ-hydroquinone (6.0 mg/l), cinnamic acid (2.7 mg/l) and hydroquinone (0.23 mg/l). The seed germination of P. americana was also inhibited dramatically by protocatechuic acid and cinnamic acid even though the content of caffeic acid (460.9 mg/l) was the highest among analyzed phenolic compounds. The heavy metal content of soil without A. altissima was higher than that of soil with E. rugosum. Particularly, Al, Fe and Mn was considerably high and most of the heavy metal were accumulated in leaves where a high level of total phenolic compounds was found.

Total Phenolic Compounds and Flavonoids in the Parts of Artichoke (Cynara scolymus L.) in Viet Nam

  • Thi, Bui Ha Thu;Park, Moon-Ki
    • Journal of Environmental Science International
    • /
    • v.17 no.1
    • /
    • pp.19-27
    • /
    • 2008
  • Artichoke extracts are widely used alone or in association with other herbs for embittering alcoholic and soft drinks and to prepare herbal teas or herbal medicinal products in Viet Nam. The objective of this paper was a screening of flavonoids and total phenolic compounds content in the parts of artichoke (Cynara scolymus L.) as flowers, leaves, roots, trunks, stumps, The total phenolic compounds and flavonoids in the parts of artichoke were extracted among 3 extraction methods as methanol extraction (EM1), mixing methanol and water method (EM2) and water extraction method (EM3). Total phenolic compounds and flavonoids were determined by UV/VIS, HPLC techniques. The apigenin 7-O-glucosides, cynarin, narirutin, gallic acid, caffeic acid were found as the main flavonoids constituents in all parts of artichoke. It showed that value of total phenolic compounds and flavonoids by EM3 were higher than that of total phenolic compounds and flavonoids by EM1 and EM2. Furthermore, the results of this study revealed that total phenolic compounds and flavonoids, obtained by these convenient extraction methods, may show the quick efficacy of artichoke in all respects of their quality and quantity.

Thermal Conductivity and Thermal Expansion Behavior of Pseudo-Unidirectional and 2-Directional Quasi-Carbon Fiber/Phenolic Composites

  • Cho, Donghwan;Choi, Yusong;Park, Jong Kyoo;Lee, Jinyong;Yoon, Byung Il;Lim, Yun Soo
    • Fibers and Polymers
    • /
    • v.5 no.1
    • /
    • pp.31-38
    • /
    • 2004
  • In the present paper, a variety of fiber reinforcements, for instance, stabilized OXI-PAN fibers, quasi-carbon fibers, commercial carbon fibers, and their woven fabric forms, have been utilized to fabricate pseudo-unidirectional (pseudo-UD) and 2-directional (2D) phenolic matrix composites using a compression molding method. Prior to fabricating quasi-carbon fiber/phenolic (QC/P) composites, stabilized OXI-PAN fibers and fabrics were heat-treated under low temperature carbonization processes to prepare quasi-carbon fibers and fabrics. The thermal conductivity and thermal expansion/contraction behavior of QC/P composites have been investigated and compared with those of carbon fiber/phenolic (C/P) and stabilized fiber/phenolic composites. Also, the chemical compositions of the fibers used have been characterized. The results suggest that use of proper quasi-carbonization process may control effectively not only the chemical compositions of resulting quasi-carbon fibers but also the thermal conductivity and thermal expansion behavior of quasi-carbon fibers/phenolic composites in the intermediate range between stabilized PAN fiber- and carbon fiber-reinforced phenolic composites.

Mechanical Properties of Carbon/Phenolic Ablative Composites (Carbon/Phenolic 내열 복합재료의 기계적 특성)

  • Kim, P.W.;Hong, S.H.;Kim, Y.C.;Yeh, B.H.;Jung, B.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.160-163
    • /
    • 1999
  • The mechanical properties and failure behaviour of carbon/phenolic composites were inverstigated by tension and compression. Carbon/phenolic composites were fabricated by infiltration of matrix into 8 harness satin woven fabric of PAN-based carbon fibers. The tensile and compressive tests were performed at 25℃ under air atmosphere and, at 400℃ and 700℃ under N₂ atmosphere. The tensile strengths of carbon/phenolic composites in with-laminar/0° warp direction were about 10 times higher than those in with-laminar/45° warp direction, which was analyzed due to a change of fracture mode from fiber pull-out by shear to tensile fracture of fibers. The fracture of carbon/phenolic composites in with-laminar/45° direction was analyzed due to delamination by buckling. Tensile and compressive strength of carbon/phenolic composites decreased to about 50% at 400℃, and to about 10% at 700℃ compared to that at room temperature. The main reason for the decrease of tensile or compressive strength with increasing temperature was analyzed due to a reduction of bond strength between fibers and matrix resulting from thermal degradation of phenolic resin.

  • PDF

Changes in Antioxidant Activity and Total Phenolic Content of Water Spinach (Ipomoea aquatic Forsk.) under In Vitro Biomimicking System

  • Lee, A-Young;Kim, Young-Suk;Shim, Soon-Mi
    • Food Engineering Progress
    • /
    • v.14 no.4
    • /
    • pp.342-345
    • /
    • 2010
  • The purpose of current study was to examine bioaccessibility of antioxidant activity and total phenolic content in each part of water spinach (Ipomoea aquatic Forsk.). In vitro biomimicking system simulated human digestive fluid was employed in order to measure bioavailable anti-oxidative effect and phenolic content. Antioxidant activity and total phenolic content was measured by using the DPPH method and the Folin-Ciocalteu assay, respectively. Stem of water spinach had a higher DPPH free radical scavenging effect (5.43 mg/mL for $IC_{50}$) than leaf (5.95 mg/mL for $IC_{50}$), while leaf had a greater level of total phenolic content (287.45 ${\mu}g$ GAE/mL) than stem (216.45 ${\mu}g$ GAE/mL). Bioaccessible antioxidant capacity and digestive stability of total phenolic content showed a similar pattern to what found in raw materials. Our result also indicated that total phenolic content was not found to be a major marker for prediction of antioxidant activity. It is plausible that other constituents such as vitamin E and C in water spinach could be contributors for antioxidant activities.

A Comparison of Phenolic Components in Cinnamon Medicines

  • Kim, Chae Won;Ko, Jun Hwi;Kim, Do Hyeong;Jin, Dezhong;Ko, Sung Kwon
    • Natural Product Sciences
    • /
    • v.28 no.2
    • /
    • pp.75-79
    • /
    • 2022
  • As a result of comparing the phenolic components of cinnamon medicines, the total phenolic component content of Cinnamomi Cortex in China was about 2.65 times higher than that of Cinnamomi Cortex in Vietnam. In addition, the total phenolic component content of Vietnamese Cinnamomi Cortex Spissus was about 1.80 times higher than that of Chinese Cinnamomi Cortex Spissus. Meanwhile, Vietnamese Cinnamomi Ramulus showed a content about 3.29 times higher than that of Chinese Cinnamomi Ramulus. Cinnamaldehyde, the main component of cinnamon medicines, showed the same tendency as the total phenolic component content. In terms of the average content of the total phenolic components, Cinnamomi Cortex showed the highest content at 23964 ㎍/g, followed by Cinnamomi Cortex Spissus at 17489 ㎍/g and Cinnamomi Ramulus at 5435.8 ㎍/g. These results showed that Cinnamomi Cortex and Cinnamomi Cortex Spissus with stem bark as usage sites had about 3.22 to 4.41 times higher content of phenolic components than Cinnamomi Ramulus with young branches as usage sites.