• Title/Summary/Keyword: Phasor Measurement Unit

Search Result 38, Processing Time 0.027 seconds

A Multi-objective Placement of Phasor Measurement Units Considering Observability and Measurement Redundancy using Firefly Algorithm

  • Arul jeyaraj, K.;Rajasekaran, V.;Nandha kumar, S.K.;Chandrasekaran, K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.474-486
    • /
    • 2015
  • This paper proposes a multi-objective optimal placement method of Phasor Measurement Units (PMUs) in large electric transmission systems. It is proposed for minimizing the number of PMUs for complete system observability and maximizing measurement redundancy of the buses, simultaneously. The measurement redundancy of the bus indicates that number of times a bus is able to monitor more than once by PMUs set. A high level of measurement redundancy can maximize the system observability and it is required for a reliable power system state estimation. Therefore, simultaneous optimizations of the two conflicting objectives are performed using a binary coded firefly algorithm. The complete observability of the power system is first prepared and then, single line loss contingency condition is added to the main model. The practical measurement limitation of PMUs is also considered. The efficiency of the proposed method is validated on IEEE 14, 30, 57 and 118 bus test systems and a real and large- scale Polish 2383 bus system. The valuable approach of firefly algorithm is demonstrated in finding the optimal number of PMUs and their locations by comparing its performance with earlier works.

Estimation of Power System Parameters using Synchronized Phaser Measurements (동기 페이저 측정치를 이용한 전력계통 매개변수 추정)

  • Song, Shi-Cheol;Cho, Ki-Seon;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.80-84
    • /
    • 2000
  • Network parameters in power systems are indispensable for all of power system engineering studies, including the power flow calculation and the state estimation. The network parameters required for the studios, in general, are estimated by using several estimation techniques, since it Is very difficult to measure. To improve the estimation accuracy of the network parameters, this paper adopt the synchronized phasor measurements which are acquired from the Phasor Measurement Unit with built-in GPS receiver. In this paper, the parameter estimation problem is formulated with over-determined nonlinear measurement equations and solved with Newton-Raphson method and pseudo-inverse. The effectiveness of the proposed parameter estimation with the synchronized phasor measurements is verified through some case studies with IEEE sample system. The results are very promising.

  • PDF

Optimal Placement of the Phasor Measurement Units in Power System (전력계통의 페이저 측정기 최적배치)

  • Kim, Jae-Hun;Jo, Gi-Seon;Kim, Hoi-Chul;Shin, Jung-Rin
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.7
    • /
    • pp.313-322
    • /
    • 2000
  • This paper presents optimal placement of minimal set of Phasor Measurement Units (PMU's) and observability analysis of the network with PMU's. In order to find a observable system, a symbolic method which directly assigns an appropriate symbol for measurement or pseudo-measurement to every entry of node-branch incidence matrix is proposed. It is much simpler and easier to analyze the observability of the network with PMU's than the conventional ones. For the optimal PMU placement problem, two approaches which are based on a modified Simulated-Annealing (SA) method and a Direct Combination method are proposed. Some case studies with IEEE sample system are made to show the performance of the proposed methods are almost alike and more effective than the conventional simulated-annealing method. It is also shown that the Direct Combination method is more effective than the modified simulated-annealing one in the sense of computation burden. The results of this study showed also that the accuracy of power system estimation and system observability can be improved the proposed PMU placements.

  • PDF

Meter Optimal Placement in Measurement System with Phasor Measurement Unit (페이저 측정 시스템의 측정기 최적배치)

  • Kim, Jae-Hoon;Cho, Ki-Seon;Kim, Hoi-Cheol;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1195-1198
    • /
    • 1999
  • This paper presents optimal placement of minimal set of phasor measurement units(PMU's) and observability of measurement system with PMU. By using the incidence matrix symbolic method which directly assigns measurement and pseudo-measurement to incidence matrix, it is much simpler and easier to analyze observability. The optimal PMU set is found through the simulated-annealing(SA) and the direct combinational method. The cooling schedule parameter which is suitable to the property of problem to solve is specified and optimal placement is proven by presented direct combinational method. Search spaces are limited within reasonable feasible solution region to reduce a unnecessary one in the SA implementation based on global search. The proposed method presents to save CPU time and estimate state vectors based on optimal PMU set.

  • PDF

Analysis and Design of FRT Detection System Using PMU (PMU를 사용한 FRT 검출시스템 설계 및 분석)

  • Kwon, Dae-Yun;Moon, Chae-Joo;Jeong, Moon-Seon;Yoo, Do-Kyeong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.643-652
    • /
    • 2021
  • Accidents or faults in the transmission and distribution system are never completely avoidable, and short-circuit and earth faults are occurs despite the efforts of the TSO and DSO. Recently, the connection to the transmission and distribution system of large-capacity new and renewable distributed power has increased rapidly and has various effects on the operation of the system. In order to minimize this, connection standards such as FRT (Fault-Ride-Through) have been established to provide wind turbines or solar inverters. In the event of a major faults of the power system, the operation support shall be provided so that the operator can stably operate the system by smoothly performing connection maintenance or rapid system separation. In this paper, in order to appropriately determine whether the FRT condition, which is the grid connection criterion for a representative DERs, is sufficient, a detection system using a PMU (Phasor Measurement Unit) that measures a synchro-phasors was designed and deployment and a system accident due to a generator step-out to analyze and evaluate the proposed system based on the case.

A Study on Object Model for "Intelligent Power Information Unit/phasor Measurement Unit" Using IEC 61850 (IEC 61850을 이용한 지능형 전력 정보 장치를 위한 객체 모델 연구)

  • Kim, Kyung-Ho;Lee, Dong-Wook;Jang, Su-Hyeog Kenneth;Shin, Young-June
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.320-322
    • /
    • 2006
  • 현재 선진국에서는 대규모 정전 사태에 대비할 수 있는 광역 감시 및 보호 시스템이 연구되고 있고 실제 필드에 적용되어 사용중인 시스템도 있지만 통신 환경의 호환성등 제한 조건이 발생되고 있다. 이에 변전소 자동화 국제표준 프로토콜인 IEC 61850을 적용하여 기존 광역 감시 시스템들의 통신 호환성의 제약을 해결하고자 하였다. 국제 표준인 IEC 61850 프로토콜은 변전소 자동화 시스템을 위해 표준화된 객체 모델을 기반으로 이루어지고 있지만 전력설비의 다양한 모델을 완벽하게 객체화하기 위하여 TC57위원회에서는 지속적으로 객체 모델 수정 및 추가 작업을 진행중이다. 본 연구는 광역 전력계통 감시에 필요하지만 IEC TC57에서 표준화되지 않은 전압안정도를 위한 객체 모델을 제시하였고, 객체에 대한 Logical Node(이하 LN)과 Common Data Class(이하 CDC)를 구성하였다. 이 LN은 LS산전의 지능형 전력 시스템 정보 장치(i-PIU: intelligent Power system Information Unit, PMU: Phasor Measurement Unit)에 적용되고 있다.

  • PDF

Fault Locator using GPS Time-synchronized Phasor for Transmission Line (송전선로의 동기페이저를 이용한 고장점 표정장치)

  • Lee, Kyung-Min;Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.1
    • /
    • pp.47-52
    • /
    • 2016
  • Fault location identification in the transmission line is an essential part of quick service restoration for maintaining a stable in power system. The application of digital schemes to protection IEDs has led to the development of digital fault locators. Normally, the impedance measurement had been used to for the location detection of transmission line faults. It is well known that the most accurate fault location scheme uses two-ended measurements. This paper deals with the complete design of a fault locator using GPS time-synchronized phasor for transmission line fault detection. The fault location algorithm uses the transmitted relaying signals from the two-ended terminal. The fault locator hardware consists of a Main Processor Unit, Analog Digital Processor Unit, Signal Interface Unit, and Power module. In this paper, sample real-time test cases using COMTRADE format of Omicron apparatus are included. We can see that the implemented fault locator identified all the test faults.

Extreme Learning Machine Approach for Real Time Voltage Stability Monitoring in a Smart Grid System using Synchronized Phasor Measurements

  • Duraipandy, P.;Devaraj, D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1527-1534
    • /
    • 2016
  • Online voltage stability monitoring using real-time measurements is one of the most important tasks in a smart grid system to maintain the grid stability. Loading margin is a good indicator for assessing the voltage stability level. This paper presents an Extreme Learning Machine (ELM) approach for estimation of voltage stability level under credible contingencies using real-time measurements from Phasor Measurement Units (PMUs). PMUs enable a much higher data sampling rate and provide synchronized measurements of real-time phasors of voltages and currents. Depth First (DF) algorithm is used for optimally placing the PMUs. To make the ELM approach applicable for a large scale power system problem, Mutual information (MI)-based feature selection is proposed to achieve the dimensionality reduction. MI-based feature selection reduces the number of network input features which reduces the network training time and improves the generalization capability. Voltage magnitudes and phase angles received from PMUs are fed as inputs to the ELM model. IEEE 30-bus test system is considered for demonstrating the effectiveness of the proposed methodology for estimating the voltage stability level under various loading conditions considering single line contingencies. Simulation results validate the suitability of the technique for fast and accurate online voltage stability assessment using PMU data.

Real Time Wide Area Voltage Stability Index in the Korean Metropolitan Area

  • Han, Sang-Wook;Lee, Byong-Jun;Kim, Sang-Tae;Moon, Young-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.451-456
    • /
    • 2009
  • Through the development of phasor measurement units (PMU), various aspects of power system dynamic behavior could be monitored and diagnosed. Monitoring dynamic voltage stability has become one of the achievements we can obtain from PMUs. It is very important to select the most appropriate method for the Korea Electric Power Corporation (KEPCO) system since there are many voltage stability indices. In this paper, we propose an advanced WAVI (Wide Area Voltage Stability) that is well suited for the purposes of monitoring the dynamic voltage stability of KEPCO's PMU installation plan. The salient features of the proposed index are: i) it uses only PMU measurements without coupling with EMS data; ii) it is computationally unburdened and can be applied to real-time situations. The proposed index is applied to the KEPCO test system and the results show that it successfully predicts voltage instability through comparative studies.