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Abstract – Online voltage stability monitoring using real-time measurements is one of the most 
important tasks in a smart grid system to maintain the grid stability. Loading margin is a good 
indicator for assessing the voltage stability level. This paper presents an Extreme Learning Machine 
(ELM) approach for estimation of voltage stability level under credible contingencies using real-time 
measurements from Phasor Measurement Units (PMUs). PMUs enable a much higher data sampling 
rate and provide synchronized measurements of real-time phasors of voltages and currents. Depth First 
(DF) algorithm is used for optimally placing the PMUs. To make the ELM approach applicable for a 
large scale power system problem, Mutual information (MI)-based feature selection is proposed to 
achieve the dimensionality reduction. MI-based feature selection reduces the number of network input 
features which reduces the network training time and improves the generalization capability. Voltage 
magnitudes and phase angles received from PMUs are fed as inputs to the ELM model. IEEE 30-bus 
test system is considered for demonstrating the effectiveness of the proposed methodology for 
estimating the voltage stability level under various loading conditions considering single line 
contingencies. Simulation results validate the suitability of the technique for fast and accurate online 
voltage stability assessment using PMU data. 
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1. Introduction 
 
With the continuous increase in power demand over the 

years, the present day power systems remain highly 
stressed and tend to operate very close to the point of 
voltage collapse. A gradual increase in system loading, 
followed by a severe contingency may thus lead to voltage 
instability, which may ultimately lead to voltage collapse 
causing blackouts. Hence, developing a fast and accurate 
computational tool for real time voltage stability monitoring 
is very much essential for the upgradation of present power 
grid to a future smart power grid.  

Voltage stability can be assessed using static and dynamic 
methods. Static voltage stability analysis is commonly used 
for clear examinations of a wide range of system conditions 
and to identify the key contributing factors. Static method 
of voltage stability analysis is done using power flow results 
by solving algebraic equations. Time domain simulation 
method is used for dynamic voltage stability analysis by 
solving differential equations.  

Many analytical methods have been proposed in the 

literature [1-12] for the static and dynamic method of 
voltage stability assessment so far are time consuming 
which limits their application for on-line. To overcome the 
limitation of conventional voltage stability assessment 
method, Artificial Neural Networks (ANN) trained by 
traditional learning algorithms have been proposed [13]-
[19] for voltage stability assessment. Because of the slow 
gradient-based learning algorithms with all the parameters 
tuned iteratively, the training time of feed forward neural 
network is in general higher. Also, the conventional 
learning algorithms suffer from slow convergence, local 
minima and over-fitting problems. Further, it involves too 
many parameters which are needed to be tuned randomly.  

This paper presents an Extreme Learning Machine (ELM) 
approach for loading margin estimation under multiple 
contingencies using real-time measurements from PMUs. 
PMU provides precise estimates of the power system 
state at frequent intervals through GPS synchronization. 
Synchrophasor data can help the operators in the control 
centre to take corrective measures by providing an early 
and improved detection of evolving grid problems. Also, 
PMU provides time synchronized phasor data at high 
sampling rate for an efficient monitoring of voltage 
stability in real time to improve the security of the smart 
power grid. The placement of PMU at suitable location is 
an important task in the Smart grid. PMUs are located in 
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such a way that they provide optimal measurements to 
achieve the full network observability with minimum 
number of measuring devices. Depth First (DF) search 
method is used for placing the PMUs. To make the ELM 
approach applicable for a large scale power system 
problem, MI-based feature selection is proposed to achieve 
the input dimensionality reduction. MI-based feature 
selection reduces the number of network input features 
which reduces the network training time and improves the 
generalization capability. Voltage magnitudes and voltage 
angles obtained from PMUs by the simulation results are 
fed as inputs to the ELM model. Loading margin is a good 
indicator for assessing the voltage stability level which is 
the output of the network. IEEE 30-bus system is 
considered for demonstrating the effectiveness of the 
proposed methodology under various loading conditions 
considering single line contingencies.  

 
 

2. Computation of Loading Margin 
 
Loading margin is a good indicator for assessing the 

voltage stability level of the power system. The amount of 
load increase from the base load point to the maximum 
loading condition without voltage collapse, according to 
the system loading parameter λ is known as loading margin 
or voltage stability margin. The loading parameter is 0 for 
base loading condition and λmax for the maximum loading 
condition. The maximum loading parameter λmax gives 
the loading margin as shown in Fig. 1. Loading margin is 
computed from the nose curve using Continuation Power 
Flow (CPF) method. The conventional power flows do 
not converge at the maximum loading point where the 
Jacobian matrix becomes singular. Continuation power 
flow overcomes this problem by reformulating the power 
equations by introducing an additional parameter. It 
includes two steps, namely, prediction and correction 
steps. In the first step, for a certain increase in load a new 
solution is predicted from a known base solution. In the 
second step, the exact solution is calculated using Newton-
Raphson power flow. Both the steps are repeated until 
the tangent vector becomes zero and maximum loading 
point is reached with the help of which loading margin is 
calculated. Thus the CPF method of obtaining the loading 

margin is a time consuming process which limits its 
application for online. Fig. 1 shows the pre-loading 
margin obtained during normal operating condition and 
post-loading margin after the occurrence of a critical 
contingency. In this work, ELM network is proposed to 
quickly estimate the loading margin using real time 
measurements from the PMUs. 

 
 

3. Placement of PMU 
 
The input data for the proposed online voltage stability 

monitoring system are the voltage magnitudes and the phase 
angles which are obtained from PMUs by the simulation 
results. The placement of PMU at suitable location is an 
important task in the Smart grid. PMUs are located in such 
a way that they provide optimal measurements to achieve 
the full network observability with minimum number of 
measuring devices. In this section, method of PMU 
placement is discussed with the aim of linear static state 
estimation of power system networks. There are various 
methods available for PMU placement in literature [20]. 
Among these methods, Depth First (DF) search method is 
adopted for placing the PMU. 

 
3.1 Rules for PMU placement 

 
The PMU placement rules proposed in [20] are adopted 

in this work and are reproduced below: 

1. One voltage measurement is assigned to a PMU placed 
bus including one current measurement to each branch 
connected to it. 

2. One voltage pseudo- measurement is assigned to each 
bus connected to another PMU equipped bus.  

3. One current pseudo- measurement is assigned to each 
branch connecting two PMU placed buses.  
 
One current pseudo-measurement is assigned to each 

branch where current can be indirectly calculated by the 
Kirchhoff current law (KCL). 

 
3.2 Depth first method of PMU placement 

 
Depth First method (DF) is one of the tree search 

methods of PMU placement. This method uses only first 
three rules of PMU placement. The essence of this method 
expands from the nodes placed the PMU to the pseudo-
measurement voltage nodes through the measurement or 
pseudo-measurement current branches, and then to all the 
nodes. The expanded nodes create a metrical tree, if the 
tree contains all the node of the system, then the system is 
topology observability, if some node is not contained in the 
metrical tree, then the system as well as these nodes is not 
complete observability. DF only considers the “depth” 
through the process of expanding, which makes the 

 
Fig. 1. Loading Margin 
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observational topologies, lay over each other unavoidably 
and increases the unwanted redundancy. 

 
 

4. Proposed Approach for Voltage Stability 
Assessment 

 
The conventional method of computing loading margin 

λmax is very time-consuming which limits its application for 
online. As an alternative, a fast and accurate real time 
voltage stability monitoring tool is proposed for estimation 
of loading margins. The voltage magnitudes and phase 
angles obtained from PMUs are given as the input of the 
ELM. Depth First (DF) method is used for placing the 
PMUs. To make the ELM approach applicable for a large 
scale power system problem, Mutual information (MI) -
based feature selection is proposed to achieve the input 
dimensionality reduction. MI-based feature selection 
reduces the number of network input features which 
reduces the network training time and improves the 
generalization capability. The various steps involved in 
the proposed approach for voltage stability assessment 
are given below:  

 
4.1 Selection of input and output variables 

 
The generalization capability of the ELM is highly 

dependent on the input variables that are selected for 
training the ELM model. Selection of appropriate input 
variables will help the network to improve its generali-
zation performance. There are several power system state 
variables which can be fed as inputs to the ELM predictor 
network. In general, real and reactive power demand at 
load buses, line flows, bus voltage magnitudes and phase 
angles are chosen as the input variables. But for the real 
time applications, PMU data are used as input variables as 
they provide direct synchronized measurements of real-
time phasors of voltages and currents. Therefore, load 
bus voltage magnitudes and phase angles obtained from 
PMUs are chosen as inputs attributes for the ELM model. 
Also, these selected variables can enhance the prediction 
accuracy of the network developed. Loading margins under 
contingency state are the outputs of the ELM network. 

 
4.2 Generation of input and output training data 

 
After identifying the network input and output variables, 

generation of sufficient input and output training data for 
the ELM are obtained using the following procedure:  

 The input training data are the pre-contingency voltage 
magnitudes and phase angles at the load buses which are 
collected from PMUs. 

 With the random variation in the real and reactive power 
at all the load buses from the base operating point and 
proportionate variation in the real power generation, the 

post - contingency loading margins are determined by 
carrying out off-line contingency analysis.  
 

4.3 Strategy for dimensionality reduction 
 
Dimensionality reduction technique is mandatory to 

reduce the input variables, thus reducing the measurement 
cost. If all the input variables are considered for training 
the developed network, then the system size grows bigger 
which results in large training time. To make the ELM 
approach applicable for a large scale power system 
problem, Mutual information (MI) -based feature selection 
is proposed to achieve the dimensionality reduction by 
selecting a subset of features from the initial set of 
available features thereby reducing the number of PMUs 
required. MI-based feature selection reduces the number of 
network input features which reduces the network training 
time and improves the generalization capability. 

 
4.4 Data normalization 

 
To avoid the dominance of higher valued input variables 

over the smaller ones and to prevent the saturation of 
simulation neuron, the input data are normalized by using 
the following expression: 

 

 
( )
( )

min

max min
n

x x range
x starting value

x x
− ×

= +
−

 (1) 

 
where, nx  is the normalized value and minx  and maxx are 
the minimum and maximum values of the data. 

 
4.5 Choice of network learning algorithm 

 
The proposed ELM learning algorithm is a new and 

promising algorithm with a lot of salient features which 
make it to be more superior to the conventional back 
propagation learning algorithm. Because of the slow 
gradient-based learning algorithms with all the parameters 
tuned iteratively, the training time of feed forward neural 
network is in general higher. With the ELM, single layer 
feed forward neural network can be simply considered as a 
linear system for mapping the input with the output that 
provides good generalization performance. Further, this 
kind of learning is faster which tends to reach small 
training error and weights. 

 
4.6 Network training and testing 

 
The normalized input features are presented to the ELM 

network for training and tested with a new input data, 
which is not previously used for training. The accuracy is 
evaluated by calculating the root mean square error 
(RMSE). Once the network is trained and tested, the 
developed network is ready for estimating the loading 
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margin values at different operating conditions. 
 
 

5. MI-Based Feature Selection 
 
The mutual information between the input variables and 

the output provides the basis for feature selection. For 
feature selection, first the mutual information between each 
variable and the model output is calculated using Eq. (2)-
(5). If a variable has a high value of MI, then this variable 
provides a significant effect on the estimated output 
value. On the other hand, those variables with low values 
of MI will be regarded as minor effects on the output. 
Corresponding to each line outage the mutual information 
value of each input variable is calculated corresponding to 
the output and each variable is assigned a weightage based 
on the calculated value of mutual information. Then the 
first few variables with high overall weightage are selected 
to train this network. 

 
5.1 Algorithm of Mutual Information 

 
According to Shannon’s information theorem, the 

random variable Y  uncertainty can be measured using 
entropy ( )H Y . Thus, for these two variables X  and Y , 
conditional entropy ( )H Y X  measures the uncertainty of 
variable Y , when the variable X  is known. Thus, the mutual 
information ( ; )I Y X measures the certainty of the variable 
Y  by resolving the variable X . The relation between 

( ) ( )( ), , ;H Y H Y X I Y X is given by  
 

 ( ) ( )( ) ;H Y H Y X I Y X= +   (2) 
 
The main objective of proposing a training classification 

model is to reduce the uncertainty predictions on output 
variable Y, for the given input variable X . Thus, training 
a classifier is to improve the MI ( );I Y X as required. If 
( ); 0I Y X = then the information contained in the 

observations may not be useful for determining the output 
Y. The goal is to achieve naturally the feature selection 
process for classification in order to obtain higher values 
with the smallest possible size of feature subsets. The 
prior entropy in the following section is defined based on 
Shannon capacity, which is defined as follows. 

Consider a stochastic system with input variable X  and 
output variable Y . Let the discrete variable with variable X  
has xN  number of possible values and the variable Y has 

yN  number of possible values. Now the initial uncertainty 
about the variable Y is defined by the entropy H(Y ), 

 

 ( )
1

( ) ( ) log (
yN

j j
j

H Y P Y P Y
=

= − ×∑   (3) 

 
where ( )jP Y  is the probability of the different value of 
the variable Y. The remaining amount of uncertainty about 
the system output variable Y after knowing the input 

variable X is defined by its conditional entropy ( )H Y X , 
 

( ) ( ) ( ) ( )( )
1 1

log
yx NN

i j i j i
i j

H Y X P X P Y X P Y X
= =

⎛ ⎞
= − × ×⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑  

(4) 
 

where ( )j iP Y X  is the conditional probability for output 
variable Yj given the input variable Xi. Now the difference 
between ( ) ( )H Y H Y X− represents the uncertainty of the 
system’s output, which can be resolved by knowing the 
input. Thus from eqn. (2) we may thus write, 

 
 ( )( ; ) ( ) )I Y X H Y H Y X= −   (5)  

 
Thus the mutual information is therefore the amount 

by which the input variables provided by X reduces the 
number of uncertainties about the random variable 
represented by Y. Mutual information, also called as a 
symmetrical measure, which represents the information 
gained from the output variable Y after observing the input 
variable X is equal to the information gained about the 
variable X after observing Y. For the contingency selection 
problem, variable X at load buses refers to the real and 
reactive power loads and variable Y represents the post-
contingency loading margin. 

 
 

6. Review of Extreme Learning Machine 
 
The conventional Back Propagation (BP) learning 

algorithm suffers from slow convergence, local minima 
and over-fitting problems as it is a first order gradient 
method. It also involves too many parameters which are 
needed to be tuned randomly. Extreme learning machine 
(ELM) [20, 21] is a new and promising three-step tuning 
free learning algorithm used for training the single hidden 
layer feedforward neural networks (SLFNs). Empirical 
risk minimization theory is adopted in ELM. The whole 
learning process is done within a single iteration. The 
proposed algorithm is able to provide good generalization 
performance, robustness, controllability and fast learning 
rate. ELM is remarkably efficient and tends to reach a 
global optimum. The input weights and hidden layer 
biases of ELM can be assigned randomly. In ELM, the 
hidden nodes are randomly initiated and then fixed 
without iteratively tuning. The weights of the output layer 
are calculated using the Moore-Penrose (MP) generalized 
inverse. ELM uses non-differentiable or even disconti-
nuous functions as an activation function. Different from 
traditional learning algorithms, the proposed learning 
algorithm not only tends to reach the smallest training 
error but also the smallest norm of weights. Therefore, 
the proposed learning algorithm tends to have good 
generalization performance for feedforward neural 
networks.  
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6.1 Implementation of ELM  
 
The output function of SLFNs with ~

N  hidden neurons 
and activation function g (x) for N arbitrary distinct samples 
( , )j jx t  is given below: 

 

 ( )
~

1
, 1,...,

N

i i j i j
i

g w x b t j Nβ
=

⋅ + = =∑   (6) 

 
where  

 

 
1 1
T T

n m
j j

T T
N N

x t
x R and t R

x t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ∈ = ∈⎢ ⎥ ⎢ ⎥
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jx  represent the N n×  input vector which corresponds 

to the voltage magnitudes of the PMU located buses. n is 
the number of input variables. 

tj represent the N m×  target vector which corresponds 
to the loading margins for the specified single line outages. 
m  is the number of output variables. 

[ ]1 2, ,.., T
i i i inw w w w=  is the weight vector connecting 

the ith hidden neuron and the input neurons, iβ =  
[ ]1 2, ,..., T

i i imβ β β is the weight vector connecting the ith 
hidden neuron and the output neurons, bi is the threshold of 
the ith hidden neuron and tj is the output value of jth input 
sample. i jw x⋅  denotes the inner product of wi and xj. 

Eq. (6) can be rewritten in compact form as below: 
 

 H Tβ =   (7) 
 
H is a non-square matrix and , ,i i iw b β  exist in case of 

single line feed network algorithm, such that  
 

 
~ ~

~ ~ ~

1 1 1 1

1 1

( ) ( )

( ) ( )

N N

N
N N N N

g w x b g w x b

H
g w xN b g w x b

×

⋅ + ⋅ +⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⋅ + ⋅ +⎢ ⎥

⎣ ⎦

  (8) 

 
Unlike single line feed network mentioned in Eq. (8), 

where the input weights and the hidden layer biases need to 
be adjusted and to adjust it dynamically an activation 
function g(x) is required and it has to be infinitely 
differentiable, here all the input variables need not to be 
adjusted and in fact that wi and bi are not necessarily 
need to be tuned and the output hidden layer matrix H 
can remain unchanged once if the variables are assigned 
randomly in the beginning of learning. 

For hidden layer bias and fixed input weight iw , seen 
from Eq. (8), to train a single line feed network is to find 
the least squares solution β̂  of the linear system is 

 
 min H Tβ β −   (9) 

 
If the number N of distinct training samples is equal to 

the number of hidden nodes N̂ , such that H becomes 
invertible and square matrix and when the hidden bias bi 
and the input weight vectors wi are chosen randomly, and 
this ELM training samples can approximated with zero 
error. However, if the number of hidden nodes is less 
than the training samples, then H becomes a non-square 
matrix and now ˆ, , ( 1,..., )i i iw b i Nβ =  may not exist , such 
that H Tβ = . Finally, the above linear system is solved as 
smallest norm least squares which is the minimum norm 
least-squares solution which is shown as: 

 
 †H Tβ =    (10) 

 
where † 1( )T TH H H H−= is the Moore-Penrose generalized 
inverse of matrix H  

The steps of ELM algorithm are briefly given below: 
 
Step 1: Random assignment of input weights and bias 

for the given activation function and hidden 
neurons. 

Step 2: Calculation of the hidden layer output vector. 
Step 3: Calculation of the output weight vector β: 

†H Tβ =  
  
 

7. Simulation Results and Discussions 
 
IEEE 30-bus system is considered to demonstrate the 

effectiveness of the proposed methodology under various 
loading conditions considering and under single line 
contingency state. The test system considered has 6 
generator buses, 24 load buses and 41 transmission lines. 
For this test system, based on the off-line contingency 
analysis, the severe contingencies are identified as 1-2, 28-
27, 27-30, 27-29, 2-5, 9-10 and 4-12. Depth First (DF) 
search algorithm is used for placing the PMUs. PMUs are 
located in such a way that they provide all the necessary 
measurements for the real time monitoring of entire power 
system voltage stability with the minimum number of 
measuring devices. The buses identified for placing the 
PMUs using the DF algorithm are 3, 5, 6, 11, 12, 17, 18, 20, 
21, 24, 26 and 27 as shown in Fig. 2. 

For real time voltage stability monitoring, the PMU data 
are used as input variables for the developed ELM model 
as they provide direct synchronized measurements of real-
time phasors of voltages and currents. Therefore, load bus 
voltage magnitudes and phase angles obtained from PMUs 
by simulation results are chosen as inputs attributes for the 
ELM model. Also, these selected variables can enhance the 
prediction accuracy of the network developed. Loading 
margins under severe contingencies are chosen as the 
output variables.  

After identifying the network input and output variables, 
generation of sufficient input and output training data for 
the ELM are obtained. The input training data are the pre-
contingency bus voltage magnitudes and phase angles 
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which are obtained as outputs from PMUs by simulation 
results. The loading margins for the identified severe 
contingencies are obtained for 1000 different loading 
conditions by randomly varying the real and reactive 
power at all the load buses from the base operating point 
with the proportionate variation in the real power 
generation by carrying out off-line contingency analysis at 
constant power factor. Out of 1000 input-output pairs, 750 
data are taken for training and 250 for testing. The total 
number of input variables fed to the ELM network is 24 
and the number of output variables is 7 which correspond 
to the loading margins of identified critical contingencies. 

 To make the ELM approach applicable for a large scale 
power system problem, Mutual information (MI) -based 
feature selection is proposed to achieve the dimensionality 
reduction thereby reducing the number of PMUs required. 
MI-based feature selection reduces the number of network 
input features which reduces the network training time 

and improves the generalization capability. The simulation 
result of the proposed MI-based feature selection method 
is illustrated in Fig. 3, from which, it is evident that only 
a few variables are having high value of mutual 
information. Only, those input variables which have overall 
high mutual information values are selected to train the 
ELM. The selected features for the ELM model are only 
the voltage magnitudes at the buses 3, 5, 6, 11, 12, 17, 18, 
21, 24 and 27. 

To avoid the dominance of higher valued input variables 
over the smaller ones and to prevent the saturation of 
simulation neuron, the input data are normalized. The 
normalized input features are presented to the ELM 
network for training and tested with a new input data, 
which is not previously used for training. The accuracy is 
evaluated by calculating the root mean square error 
(RMSE). The performance comparison of ELM model 
without and with feature selection is given in Table 1.  

Thus, it is very clear that the PMU data obtained by the 
simulation results are sufficient for the developed ELM 
model to estimate the post contingency loading margins 
accurately. Also, it is seen that the generalization 
performance of the ELM trained with the reduced input 
variables using MI-based feature selection method has 
been improved. Thus, only 10 input variables obtained 
from PMU are sufficient to train the ELM. 

Table 2 shows the comparison of ELM output with CPF 
result for one particular loading condition along with 
ranking of contingencies.  

The ELM results validate the proposed methodology for 
on line estimation of loading margin for large scale power 
system. The result shows that ELM developed can be 

  
Fig. 2. IEEE 30 bus diagram for illustrating optimal PMU 

locations 
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Fig. 3. Simulation result of MI-based feature selection 

Table 1. Comparison of ELM performance with all 
features and with feature selection 

Parameters ELM with all 
features 

ELM with feature 
selection 

Number of input variables 24 10 
Number of output variables 7 7 

Training data 750 750 
Testing data 250 250 

Training accuracy (RMSE) 8.9924e-006 1.8727e-008 
Testing accuracy (RMSE) 1.5351e-004 9.3992e-005 

Training time (s) 2.9063 2.8594 
Testing time (s) 0.0011 0.0011 

 
Table 2. Comparison of ELM output with CPF result 

ELM output CPF result 
Line outage Loading margin  

in p.u Rank Loading margin 
in p.u Rank

1 - 2 0.2612 I 0.2612 I 
2 - 5 2.0411 V 2.0410 V 
4 - 12 2.7010 VII 2.7010 VII
9 - 10 2.4207 VI 2.4207 VI 

28 - 27 1.4144 II 1.4144 II 
27 - 29 2.0143 IV 2.0143 IV 
27 - 30 1.8089 III 1.8089 III 
 



P. Duraipandy and D. Devaraj 

 http://www.jeet.or.kr │ 1533

used for fast and accurate contingency ranking. The 
performance comparison of proposed ELM with the 
conventional BPNN is shown in Table 3.  

The results show that the training time of ELM is 
reduced compared to that of BP learning algorithm which 
makes the ELM an extremely fast learning network.  

 After training, the developed network is able to 
estimate the loading margin of severe contingencies within 
a short duration i.e., 0.0011 seconds when compared to 
time taken to compute loading margin of 7 line outages 
using conventional power flow method i.e., 12.575 seconds. 
This shows that the proposed ELM is computationally 
efficient and is suitable for on-line voltage stability 
assessment for multiple contingencies. Once the network is 
trained and tested, the developed network is ready for 
estimating the loading margin values at different operating 
conditions in real time using real time PMU measurements. 

 
 

8. Conclusion and Future Work 
 
In this paper, an ELM-based model is proposed for on-

line voltage stability margin estimation. The proposed 
ELM-based online voltage stability monitoring tool has 
been proved to be an accurate and valid model for online 
estimation of power system loading margins for severe 
contingencies using the synchronized phasor measurements. 
Depth First (DF) method is used for placing the PMUs 
ensuring the complete observability of the power system 
with the minimum number of measuring devices connected 
to it. To make the ELM approach applicable for a large 
scale power system problem, Mutual information (MI) -
based feature selection is proposed to achieve the input 
dimensionality reduction. MI-based feature selection reduces 
the number of network input features which reduces the 
network time and improves the generalization capability. 
IEEE 30-bus test system is considered for a demonstration 
of effectiveness of the proposed methodology under various 
loading conditions considering single line contingencies. 
Simulation results validate the proposed ELM technique 
for fast and accurate online voltage stability assessment 
using PMU data. For future work, the voltage magnitude 
and phase angles of excluded buses where PMUs have 
not been installed can be reconsidered using Mutual 
Information (MI)- based feature selection method inorder 

to identify those input features which are having high value 
of mutual information so that network accuracy can be 
further enhanced. Also, it is planned to implement Genetic 
Algorithm (GA) and other optimization algorithms for 
optimal placement of PMU in future. 
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