• Title/Summary/Keyword: Phases transformation

Search Result 245, Processing Time 0.022 seconds

Effects of Special Heat Treatments and Alloying Elements on the Microstructures and Mechanical Charateristics of ADI (ADI의 미세조직과 기계적 특성에 미치는 특수열처리 및 합금원소의 영향)

  • Kim, Sug-Won;Han, Sang-Won;Lee, Ui-Jong;Park, Jin-Sung;Woo, Kee-Do;Lim, Dong-Keun
    • Journal of Korea Foundry Society
    • /
    • v.22 no.2
    • /
    • pp.69-74
    • /
    • 2002
  • The effects of heat treatments and alloying elements on the microstructure and mechanical charaterisitics of specially austempered ADIs containing alloying elements such as Cu, Mo and Ni were investigated. To compare with the effect of conventional and normal(CN) austempering treatment, two kinds of special austempering treatments which are those with pre-quenching and pre-heating were conducted. The hardness and uniaxial fatigue tests were carried out to evaluate the mechanical charateristics. The hardness of ADI treated by CN heat cycles was higher than those of other ADIs. Cu added ADI (Cu-ADI) tempered at 400 after austenitizing exhibited the highest fatigue life cycles. While austempering after prequenching makes the austenite with high carbon stable, which resulted in transformation to highly strengthened bainites from the carbon enriched austenite phases during tempering. The high carbon enriched banites is considered to improve the fatigue strength.

Feasibility Evaluation of High-Tech New Product Development Projects Using Support Vector Machines

  • Shin, Teak-Soo;Noh, Jeon-Pyo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.241-250
    • /
    • 2005
  • New product development (NPD) is defined as the transformation of a market opportunity and a set of assumptions about product technology into a product available for sale. Managers charged with project selection decisions in the NPD process, such as go/no-go choices and specific resource allocation decisions, are faced with a complicated problem. Therefore, the ability to develop new successful products has identifies as a major determinant in sustaining a firm's competitive advantage. The purpose of this study is to develop a new evaluation model for NPD project selection in the high -tech industry using support vector machines (SYM). The evaluation model is developed through two phases. In the first phase, binary (go/no-go) classification prediction model, i.e. SVM for high-tech NPD project selection is developed. In the second phase. using the predicted output value of SVM, feasibility grade is calculated for the final NPD project decision making. In this study, the feasibility grades are also divided as three level grades. We assume that the frequency of NPD project cases is symmetrically determined according to the feasibility grades and misclassification errors are partially minimized by the multiple grades. However, the horizon of grade level can be changed by firms' NPD strategy. Our proposed feasibility grade method is more reasonable in NPD decision problems by considering particularly risk factor of NPD in viewpoints of future NPD success probability. In our empirical study using Korean NPD cases, the SVM significantly outperformed ANN and logistic regression as benchmark models in hit ratio. And the feasibility grades generated from the predicted output value of SVM showed that they can offer a useful guideline for NPD project selection.

  • PDF

Effects os Cold Drawing Ratio on the Hardness of Inconel 718 Wire (Inconel 718 선재의 경도에 미치는 냉간신선가공의영향)

  • Jeong, Yong-Kwon;Jo, Chang-Yong;Jung, Byong-Ho;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.8 no.4
    • /
    • pp.354-358
    • /
    • 1998
  • Effect of cold drawing ratio and aging time on the hardness of lnconel 718 wire aged at 11l6K were investi¬gated by hardness measurement and scanning & transmission electron microscopy. Hardness which was 245Hv in as¬solution treated condition increased very rapidly to 450Hv as cold drawing ratio increased to 50%. The hardness in the early stage of aging was increased by the precipitation of $\gamma^{'}$ and $\gamma^{'}$ phases and after the peak hardness, the hardness was decreased by the transformation of $\gamma^{'}$ phase to $\delta$ phase. The time to reach peak hardness during aging appeared to be reduced with the increase of cold drawing ratio, and those times were 30, 10, and 5 minutes for 0, 30 and 50% cold drawn materials, respectively. For the 50% cold drawn material. $\gamma^{'}$ and $\gamma^{'}$ were precipitated by aging for 5 minutes at 1116K. The hardness in the same material was largely decreased under the initial hardness by the recrystallization.

  • PDF

Comparative Analysis of Strengthening with Respect to Microstructural Evolution for 0.2 Carbon DP, TRIP, Q&P Steels

  • Jin, Jong-Won;Park, Yeong-Do;Nam, Dae-Geun;Lee, Seung-Bok;Kim, Sung-Il;Kang, Nam-Hyun;Cho, Kyung-Mox
    • Korean Journal of Materials Research
    • /
    • v.19 no.6
    • /
    • pp.293-299
    • /
    • 2009
  • The microstructures and mechanical properties of Dual Phase (DP), Transformation-Induced Plasticity (TRIP), and Quenching & Partitioning (Q&P) steels were investigated in order to define the strengthening mechanism of 0.2 C steel. An intercritical annealing between Ac1 and Ac3 was conducted to produce DP and TRIP steel, followed by quenching the DP and TRIP steel being quenched at to room temperature and by the TRIP steel being austemperingaustempered-air cooling cooled the steel toat room temperature, respectively. The Q&P steel was produced from full austenization, followed by quenching to the temperature between $M_s$ and $M_f$, and then enriching the carbon to stabilize the austenite throughout the heat treatment. For the DP and TRIP steels, as the intercritical annealing temperature increased, the tensile strength increased and the elongation decreased. The strength variation was due to the amount of hard phases, i.e., martensite and bainite, respectively in the DP and TRIP steels. It was also found that the elongation also decreased with the amount of soft ferrite in the DP and TRIP steels and with the amount of the that was retained in the austenite phasein the TRIP steel, respectively for the DP and TRIP steels. For the Q&P steel, as the partitioning time increased, the elongation and the tensile strength increased slightly. This was due to the stabilized austenite that was enriched with carbon, even when the amount of retained austenite decreased as the partitioning time increased from 30 seconds to 100 seconds.

Effect of χ Phase on the Impact Toughness of 25Cr-7Ni-4Mo Super Duplex Stainless Steel (25Cr-7Ni-4Mo 수퍼 2상 스테인리스강의 충격인성에 미치는 χ의 영향)

  • Kang, C.Y.;Han, H.S.;Lee, S.H.;Han, T.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.2
    • /
    • pp.74-79
    • /
    • 2012
  • This study has been carried out to investigate the precipitation behavior of ${\chi}$ phase and effect of ${\chi}$ phase precipitation on the impact toughness of 25%Cr-7%Ni-4%Mo super duplex stainless steel. It was proved that the ${\chi}$ phase was a intermetallic compound, which represented the higher chromium and molybdenum concentration than the matrix phases, and also showed the higher molybdenum concentration than the ${\sigma}$ phase. The ${\chi}$ phase was precipitated at the interface between ferrite and austenite or inside the ferrite matrix in the early stage of aging. The number of ${\chi}$ phase precipitates increased with increasing aging time, however, after showing the maximum value, the number was decreased due to the gradual transformation of ${\chi}$ phase into ${\sigma}$-phase. Aging ferrite phase was decomposed by the $r^2$ phase and ${\sigma}$-phase. Impact toughness rapidly decreased with time in the initial stage of aging at ${\chi}$ phase start to precipitate. Thus, the impact toughness was greatly influence for the precipitation of ${\chi}$ phase.

The conversion of ammonium uranate prepared via sol-gel synthesis into uranium oxides

  • Schreinemachers, Christian;Leinders, Gregory;Modolo, Giuseppe;Verwerft, Marc;Binnemans, Koen;Cardinaels, Thomas
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.1013-1021
    • /
    • 2020
  • A combination of simultaneous thermal analysis, evolved gas analysis and non-ambient XRD techniques was used to characterise and investigate the conversion reactions of ammonium uranates into uranium oxides. Two solid phases of the ternary system NH3 - UO3 - H2O were synthesised under specified conditions. Microspheres prepared by the sol-gel method via internal gelation were identified as 3UO3·2NH3·4H2O, whereas the product of a typical ammonium diuranate precipitation reaction was associated to the composition 3UO3·NH3·5H2O. The thermal decomposition profile of both compounds in air feature distinct reaction steps towards the conversion to U3O8, owing to the successive release of water and ammonia molecules. Both compounds are converted into α-U3O8 above 550 ℃, but the crystallographic transition occurs differently. In compound 3UO3·NH3·5H2O (ADU) the transformation occurs via the crystalline β-UO3 phase, whereas in compound 3UO3·2NH3·4H2O (microspheres) an amorphous UO3 intermediate was observed. The new insights obtained on these uranate systems improve the information base for designing and synthesising minor actinide-containing target materials in future applications.

Applying 3D Printing Spare Parts to Operation Field (3D 프린팅 수리부품의 작전현장 적용을 위한 방안)

  • Yoo, Seunghee;Hur, Jangwan;Lee, Heungryong
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.1
    • /
    • pp.54-61
    • /
    • 2019
  • The 3D printing technology took the second place within the top ten rising technologies at the World Economic Forum in 2012. It arose as a core technology that would enable transformation in the manufacturing industry and develop new markets through the change of existing industry paradigms. Leading countries, like the United States of America, are actively expanding the use of 3D printing technologies within their defense areas. In order to utilize the technology within her defense areas, the Republic of Korea is planning to acquire defense spare parts manufacturing technologies and nurture professional defense personnel specializing in the 3D printing technology. Hence, this study offers various methods to efficiently apply reliable 3D printing spare parts to operation fields in the future by utilizing spare parts localization development management methods within existing weapon systems' development, manufacturing and sustainment phases.

Characteristics of Cu-Doped Ge8Sb2Te11 Thin Films for PRAM (PRAM용 Cu-도핑된 Ge8Sb2Te11 박막의 특성)

  • Kim, Yeong-Mi;Kong, Heon;Kim, Byung-Cheul;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.376-381
    • /
    • 2019
  • In this work, we evaluated the structural, electrical and optical properties of $Ge_8Sb_2Te_{11}$ and Cu-doped $Ge_8Sb_2Te_{11}$ thin films prepared by rf-magnetron reactive sputtering. The 200-nm-thick deposited films were annealed in a range of $100{\sim}400^{\circ}C$ using a furnace in an $N_2$ atmosphere. The amorphous-to-crystalline phase changes of the thin films were investigated by X-ray diffraction (XRD), UV-Vis-IR spectrophotometry, a 4-point probe, and a source meter. A one-step phase transformation from amorphous to face-centered-cubic (fcc) and an increase of the crystallization temperature ($T_c$) was observed in the Cu-doped film, which indicates an enhanced thermal stability in the amorphous state. The difference in the optical energy band gap ($E_{op}$) between the amorphous and crystalline phases was relatively large, approximately 0.38~0.41 eV, which is beneficial for reducing the noise in the memory devices. The sheet resistance($R_s$) of the amorphous phase in the Cu-doped film was about 1.5 orders larger than that in undoped film. A large $R_s$ in the amorphous phase will reduce the programming current in the memory device. An increase of threshold voltage ($V_{th}$) was seen in the Cu-doped film, which implied a high thermal efficiency. This suggests that the Cu-doped $Ge_8Sb_2Te_{11}$ thin film is a good candidate for PRAM.

Effect of Microstructure on Corrosion Characteristics of Zr-5Nb Alloy (Zr-5Nb 합금의 부식특성에 미치는 미세조직 영향)

  • Kim, Hyun-Gil;Choi, Byoung-Kwon;Cho, Hai-Dong;Park, Jeong-Yong;Jeong, Yong-Hwan
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.8
    • /
    • pp.482-488
    • /
    • 2008
  • For a better understanding of the correlation between a corrosion and a microstructure, it is necessary to study a phase transformation with an annealing condition for Zr-Nb alloy. Zr-5wt.%Nb alloy with different phase characteristics was prepared with various annealing conditions. A microstructural study and corrosion test were performed to investigate the effect of a phase such as the phase type, fraction, and size on corrosion. The corrosion behavior of the Zr-5Nb alloy was very sensitive to the annealing condition, which affected the formation of the ${\beta}$-phases (${\beta}$-Nb or ${\beta}$. The corrosion rate of the Zr-5Nb alloy annealed at $500^{\circ}C$ with the formation of the ${\beta}$-Nb phase was lower than that of the Zr-5Nb alloy annealed from 600 to $800^{\circ}C$ with the formation of the ${\beta}$-Zr phase. The highest corrosion rate was observed for the ${\beta}$-quenched Zr-5Nb alloy. After a consideration of the corrosion rate and micro structure of the Zr-5Nb alloy, the corrosion resistance of that alloy was improved due to the formation of a small sized ${\beta}$-Nb phase which could be controlled by the annealing condition.

Property and Microstructure Evaluation of Pd-inserted Nickel Monosilicides (Pd 삽입 니켈모노실리사이드의 물성과 미세구조 변화)

  • Yoon, Kijeong;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.2
    • /
    • pp.69-79
    • /
    • 2008
  • A composition consisting of 10 nm-Ni/1 nm-Pd/(30 nm or 70 nm-poly)Si was thermally annealed using rapid thermal for 40 seconds at $300{\sim}1100^{\circ}C$ to improve the thermal stability of conventional nickel monosilicide. The annealed bilayer structure developed into $Ni(Pd)Si_x$, and the resulting changes in sheet resistance, microstructure, phase, chemical composition, and surface roughness were investigated. The silicide, which formed on single crystal silicon, could defer the transformation of $NiSi_2$, and was stable at temperatures up to $1100^{\circ}C$. It remained unchanged on polysilicon substrate compared with the sheet resistance of conventional nickel silicide. The silicides annealed at $700^{\circ}C$, formed on single crystal silicon and 30 nm polysilicon substrates exhibited 30 nm-thick uniform silicide layers. However, silicide annealed at $1,000^{\circ}C$ showed preferred and agglomerated phase. The high resistance was due to the agglomerated and mixed microstructures. Through X-ray diffraction analysis, the silicide formed on single crystal silicon and 30 nm polysilicon substrate, showed NiSi phase on the entire temperature range and mixed phases of NiSi and $NiSi_2$ on 70 nm polysilicon substrate. Through scanning probe microscope (SPM) analysis, we confirmed that the surface roughness increased abruptly until 36 nm on 30 nm polysilicon substrate while not changed on single crystal and 70 nm polysilicon substrates. The Pd-inserted nickel monosilicide could maintain low resistance in a wide temperature range and is considered suitable for nano-thick silicide processing.