Property and Microstructure Evaluation of Pd-inserted Nickel Monosilicides

Pd 삽입 니켈모노실리사이드의 물성과 미세구조 변화

  • Yoon, Kijeong (Department of Materials Science and Engineering, University of Seoul) ;
  • Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
  • 윤기정 (서울시립대학교 신소재공학과) ;
  • 송오성 (서울시립대학교 신소재공학과)
  • Received : 2007.11.12
  • Published : 2008.02.10

Abstract

A composition consisting of 10 nm-Ni/1 nm-Pd/(30 nm or 70 nm-poly)Si was thermally annealed using rapid thermal for 40 seconds at $300{\sim}1100^{\circ}C$ to improve the thermal stability of conventional nickel monosilicide. The annealed bilayer structure developed into $Ni(Pd)Si_x$, and the resulting changes in sheet resistance, microstructure, phase, chemical composition, and surface roughness were investigated. The silicide, which formed on single crystal silicon, could defer the transformation of $NiSi_2$, and was stable at temperatures up to $1100^{\circ}C$. It remained unchanged on polysilicon substrate compared with the sheet resistance of conventional nickel silicide. The silicides annealed at $700^{\circ}C$, formed on single crystal silicon and 30 nm polysilicon substrates exhibited 30 nm-thick uniform silicide layers. However, silicide annealed at $1,000^{\circ}C$ showed preferred and agglomerated phase. The high resistance was due to the agglomerated and mixed microstructures. Through X-ray diffraction analysis, the silicide formed on single crystal silicon and 30 nm polysilicon substrate, showed NiSi phase on the entire temperature range and mixed phases of NiSi and $NiSi_2$ on 70 nm polysilicon substrate. Through scanning probe microscope (SPM) analysis, we confirmed that the surface roughness increased abruptly until 36 nm on 30 nm polysilicon substrate while not changed on single crystal and 70 nm polysilicon substrates. The Pd-inserted nickel monosilicide could maintain low resistance in a wide temperature range and is considered suitable for nano-thick silicide processing.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. 1. J. J. Tasi and C. M. Osburn, IEEE Trans. Electron Device, 45, 1946 (1998). https://doi.org/10.1109/16.711360
  2. J. Y. Dai, Z. R. Guo, S. F. Tee, C. L. Tay, Eddie Er, S. Redkar, Appl. Phys. Lett. 78, 20 (2001)
  3. J. Prokop, C. E. Zybill and S. Veprek, Thin Solid Films, 359, 39 (2000). https://doi.org/10.1016/S0040-6090(99)00654-9
  4. C. Detavernier, R. L. Van Meirhaeghe, F. Cardon, K. Maex, H. Bender and S. Zhu, J. Appl. Phys. 88, 1 (2000). https://doi.org/10.1063/1.373615
  5. O. O. Awadelkarim, S. J. Fonash, P. I. Mikulan, M. Ozaita and Y. D. Chan, Microelectron. Eng. 28, 47 (1995). https://doi.org/10.1016/0167-9317(95)00013-X
  6. E. G. Colgan, J. P. Gambino and Q. Z. Hong, Mater. Sci. Eng. 16, 43 (1996). https://doi.org/10.1016/0927-796X(95)00186-7
  7. H. Fang, M. C. Ozturk, E. G. Seebauer and D. E. Batchelor, J. Electrochem. Soc. 146, 4240 (1999). https://doi.org/10.1149/1.1392621
  8. J. Lutze, G. Scott and M. Manley, IEEE Electron Device Lett. 21, 155 (2000). https://doi.org/10.1109/55.830966
  9. F. Hong and G. A. Rozgonyi, J. Electrochem. Soc. 141, 3480 (1994). https://doi.org/10.1149/1.2059357
  10. F. Hong, G. A. Rozgonyi and B. K. Patnaik, Appl. Phys. Lett. 61, 1519 (1992). https://doi.org/10.1063/1.108465
  11. J. B. Lasky, J. S. Nakos, O. J. Cain and P. J. Geiss, IEEE Trans. Electron Devices 38, 262 (1991). https://doi.org/10.1109/16.69904
  12. C. Lavoie, F. M. d`Heurle, C. Detavernier and C. Cabral Jr., Microelectron. Eng., 70, 144 (2003). https://doi.org/10.1016/S0167-9317(03)00380-0
  13. B. A. Julies, D. Knoesen, R. Pretorius and D. Adams, Thin Solids Films 347, 201 (1999). https://doi.org/10.1016/S0040-6090(99)00004-8
  14. K. J. Yoon and O. S. song, Kor. J. Mater. Res., 16, 9 (2006). https://doi.org/10.3740/MRSK.2006.16.9.571
  15. W. Huang, L. Zhang, Y. Gao and H. Jin, Microelectron. Eng. 83, 345 (2006). https://doi.org/10.1016/j.mee.2005.10.001
  16. D. B. Williams and C. B. Carter, Transmission Electron Microscopy Basics I, 1st ed., P.152-170, Plenum Press, NewYork, U.S.A. (1996).
  17. I. Doi, R. C. Teixeira, R E. Santos, J. A. Diniz, J. W. Swart and S. G. S. Filho, Microelecrton. Eng. 82, 485 (2005). https://doi.org/10.1016/j.mee.2005.07.047
  18. O. S. Song, K. J. Yoon, T. H. Lee and M. J. Kim, Kor. J. Mater. Res. 17, 4 (2007). https://doi.org/10.3740/MRSK.2007.17.4.207
  19. J. A. Kittl, A. Lauwers, M. A. Pawlak, M. J.H. Dal, A. Veloso, K. J. Anil, G. Pourtois, C. Demeurisse, T. Schram, B. Brijs, M. Potter, C. Vrancken and K. Maex, Microelectron. Eng. 82, 441 (2005). https://doi.org/10.1016/j.mee.2005.07.084