Effect of Microstructure on Corrosion Characteristics of Zr-5Nb Alloy

Zr-5Nb 합금의 부식특성에 미치는 미세조직 영향

  • Kim, Hyun-Gil (Fusion Technology Division, Korea Atomic Energy Reserch Institute) ;
  • Choi, Byoung-Kwon (Fusion Technology Division, Korea Atomic Energy Reserch Institute) ;
  • Cho, Hai-Dong (Nuclear Materials Research Division, Korea Atomic Energy Reserch Institute) ;
  • Park, Jeong-Yong (Fusion Technology Division, Korea Atomic Energy Reserch Institute) ;
  • Jeong, Yong-Hwan (Fusion Technology Division, Korea Atomic Energy Reserch Institute)
  • 김현길 (한국원자력연구원 원자력융합기술개발부) ;
  • 최병권 (한국원자력연구원 원자력융합기술개발부) ;
  • 조해동 (한국원자력연구원 원자력재료연구부) ;
  • 박정용 (한국원자력연구원 원자력융합기술개발부) ;
  • 정용환 (한국원자력연구원 원자력융합기술개발부)
  • Received : 2008.06.23
  • Published : 2008.08.25

Abstract

For a better understanding of the correlation between a corrosion and a microstructure, it is necessary to study a phase transformation with an annealing condition for Zr-Nb alloy. Zr-5wt.%Nb alloy with different phase characteristics was prepared with various annealing conditions. A microstructural study and corrosion test were performed to investigate the effect of a phase such as the phase type, fraction, and size on corrosion. The corrosion behavior of the Zr-5Nb alloy was very sensitive to the annealing condition, which affected the formation of the ${\beta}$-phases (${\beta}$-Nb or ${\beta}$. The corrosion rate of the Zr-5Nb alloy annealed at $500^{\circ}C$ with the formation of the ${\beta}$-Nb phase was lower than that of the Zr-5Nb alloy annealed from 600 to $800^{\circ}C$ with the formation of the ${\beta}$-Zr phase. The highest corrosion rate was observed for the ${\beta}$-quenched Zr-5Nb alloy. After a consideration of the corrosion rate and micro structure of the Zr-5Nb alloy, the corrosion resistance of that alloy was improved due to the formation of a small sized ${\beta}$-Nb phase which could be controlled by the annealing condition.

Keywords

Acknowledgement

Supported by : 교과부

References

  1. G. P. Sabol, G. R. Kilp, M. G. Balfour and E.Roberts, Zirconium in the Nuclear Industry, ASTM STP 1023, 227 (1989)
  2. J.P. Mardon, D. Charquet and J. Senevat, Zirconium in the Nuclear Industry, ASTM STP 1354, 505 (2000)
  3. Y. H. Jeong, S. Y. Park, M. H. Lee, B. K. Choi, J. H. Baek, J. Y. Park, J. H. Kim and H. G. Kim, J. Nucl. Sci. Tech. 43, 977 (2006) https://doi.org/10.3327/jnst.43.977
  4. Y. H. Jeong, K. O. Lee and H. G. Kim, J. Nucl. Mater. 302, 9 (2002) https://doi.org/10.1016/S0022-3115(02)00703-1
  5. H. G. Kim, Y. H. Jeong and T. H. Kim, J. Nucl. Mater. 317, 1 (2003) https://doi.org/10.1016/S0022-3115(02)01676-8
  6. H. G. Kim, S. Y. Park, M. H. Lee, Y. H. Jeong and S. D. Kim, J. Nucl. Mater. 373, 429 (2008) https://doi.org/10.1016/j.jnucmat.2007.05.035
  7. C. E. Lundin, R. H. Cox, USAEC Report, GEAP-4089 1, 9 (1962)
  8. B. O. Choi, H. G. Kim, Y. S. Lim and Y. H. Jeong, J. Kor. Inst. Met. & Mater. 42, 178 (2004)
  9. C. E. L. Hunt and P. Niessen, J. Nucl. Mater. 38, 17 (1971) https://doi.org/10.1016/0022-3115(71)90003-1
  10. D. O. Northwood and D. T. Lim, Can. Metall. Quart. 18, 441 (1979) https://doi.org/10.1179/000844379795317643
  11. G. J. Cuello, A. F. Guillermet, G. B. Gard, R. E. Mayer, J. R. Granada, J. Nucl. Mater. 218, 236 (1995) https://doi.org/10.1016/0022-3115(94)00437-4
  12. E. Hilliner: Zirconium in the Nuclear Industry, ASTM STP 633, 211 (1977)