• Title/Summary/Keyword: Phase-shifting technique

Search Result 87, Processing Time 0.023 seconds

Improved 3D Shape Measurement Scheme for White Light Phase Shifting Interferometry (백색광 위상천이 간섭계를 위한 개선된 삼차원 형상 측정 방법)

  • Kim, Kyoung-Il;Lee, Dong-Yeol;Ko, Yun-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.2
    • /
    • pp.51-60
    • /
    • 2010
  • This paper proposes a new scheme to obtain enhanced 3D shape information rapidly for WLPSI(White Light Phase Shifting Interferometry). WLPSI is a convenient method to measure the height of the micro products. First we propose an effective method of limiting search interval for detecting the peak of the visibility function in order to obtain 3D shpae information rapidly. Second we propose an automatic base level decision method basad on image processing and a correction algorithm using the least square approximation method to overcome the global tilt problem of the conventional WLPSI algorithms. Third we propose an adaptive filtering method to remove the distortion known as bat-wing effect which appears near the step discontinuity. Experimental results show that the proposed overall technique is fast and provides more enhanced 3D shape information compared with the conventional WLPSI algorithms.

SER Analysis of Arbitrary Two-Dimensional Signaling over Nonlinear AWGN Channels (비선형 채널에서 임의의 2차원 변조 신호의 SER 분석)

  • Lee, Jae-Yoon;Yoon, Dong-Weon;Cho, Kyong-Kuk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7A
    • /
    • pp.738-745
    • /
    • 2007
  • The non-linearity of HPA(high power amplifier) which is an important component in modern communications systems introduces AM/AM and AM/PM distortion so that the transmitted signal is deteriorated. And, the I/Q unbalances and phase error which are generated by non-ideal components are inevitable physical phenomena and lead to performance degradation when we implement a practical two-dimensional (2-D) modulation system. In this paper, we provide an exact and general expression involving the 2-D Gaussian Q-function for the error probabilities of arbitrary 2-D signaling with I/Q amplitude and phase unbalances in nonlinear additive white Gaussian noise (AWGN) channels by using the coordinate rotation and shifting technique.

Hybrid Color and Grayscale Images Encryption Scheme Based on Quaternion Hartley Transform and Logistic Map in Gyrator Domain

  • Li, Jianzhong
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.42-54
    • /
    • 2016
  • A hybrid color and grayscale images encryption scheme based on the quaternion Hartley transform (QHT), the two-dimensional (2D) logistic map, the double random phase encoding (DRPE) in gyrator transform (GT) domain and the three-step phase-shifting interferometry (PSI) is presented. First, we propose a new color image processing tool termed as the quaternion Hartley transform, and we develop an efficient method to calculate the QHT of a quaternion matrix. In the presented encryption scheme, the original color and grayscale images are represented by quaternion algebra and processed holistically in a vector manner using QHT. To enhance the security level, a 2D logistic map-based scrambling technique is designed to permute the complex amplitude, which is formed by the components of the QHT-transformed original images. Subsequently, the scrambled data is encoded by the GT-based DRPE system. For the convenience of storage and transmission, the resulting encrypted signal is recorded as the real-valued interferograms using three-step PSI. The parameters of the scrambling method, the GT orders and the two random phase masks form the keys for decryption of the secret images. Simulation results demonstrate that the proposed scheme has high security level and certain robustness against data loss, noise disturbance and some attacks such as chosen plaintext attack.

Sensitivity Enhancement of Shadow Moiré Technique for Warpage Measurement of Electronic Packages (반도체 패키지의 굽힘변형 측정을 위한 그림자 무아레의 감도향상 기법연구)

  • Lee, Dong-Sun;Joo, Jin-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.3
    • /
    • pp.57-65
    • /
    • 2015
  • Electronic packages consist of various materials, and as temperature changes, warpage occurs because of the difference in coefficient of thermal expansion. Shadow $moir{\acute{e}}$ is non-contact, whole field measurement technique for out-of-plane displacement. However, the technique has low sensitivity above $50{\mu}m/fringe$, it is not adequate for the warpage measurement in some circumstance. In this paper, by applying phase shifting process to the traditional shadow $moir{\acute{e}}$, measurement system having enhanced sensitivity of $12.5{\mu}m/fringe$ is constructed. Considering Talbot effect, the measurement is carried out in the half Talbot area. Shadow fringe pattern having four times enhanced sensitivity is obtained by the image process with four shadow fringes. The measurement technique is applied to the fibered package substrate and coreless package substrate for measuring warpages at room temperature and at about $100^{\circ}C$.

Determining the Refractive Index Distribution of an Optical Component Using Transmission Deflectometry with Liquids (액체와 투과형 편향법을 이용한 광학부품의 굴절률 분포 측정)

  • Shin, Sanghoon;Yu, Younghun
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.6
    • /
    • pp.326-333
    • /
    • 2014
  • Phase-measuring deflectometry is a full-field gradient measuring technique that lends itself very well to testing specular optical surfaces. We have measured the deformation of the surface of a lens by transmission deflectometry with liquids. In this study, a method is proposed for measuring the refractive index distribution of a transparent object component. The proposed method combines transmission deflectometry with liquids. The deformed fringe patterns of a sample immersed in different fluids are recorded, and then the three-dimensional phase information of the sample is reconstructed numerically. We have used phase-shifting and temporal phase-unwrapping methods to retrieve the phase from the measured deformed fringe pattern, and we have used a least-squares method to find the height information of the specular surface from the calculated slope. In particular, we have proposed a theoretical model for determining the refractive index of sample and planar convex lens are demonstrated experimentally.

Power System Congestion Problems using Hybrid Control of PST and Real Power Generation (위상변환기와 발전출력 하이브리드 제어를 이용한 계통 혼잡처리 방안)

  • Kim, Kyu-Ho;Song, Kyung-Bin
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.223-225
    • /
    • 2005
  • This paper presents a scheme to solve the congestion problem using hybrid control with phase-shifting transformer(PST) and power generation in power systems. A good design of PST and power generation control can improve total transfer capability(TTC) in interconnected systems. This paper deals with an application of optimization technique for TTC calculation. The optimization method is used to maximize power flow of tic line subject to security constraints such as voltage magnitude and real power flow. The proposed method is applied to 10 machines 39 buses model systems to show its effectiveness.

  • PDF

Roughness Measurement Performance Obtained with Optical Interferometry and Stylus Method

  • Rhee Hyug-Gyo;Lee Yun-Woo;Lee In-Won;Vorburger Theodore V.
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.48-54
    • /
    • 2006
  • White-light scanning interferometry (WLI) and phase shifting interferometry (PSI) are increasingly used for surface topography measurements, particularly for areal measurements. In this paper, we compare surface profiling results obtained from above two optical methods with those obtained from stylus instruments. For moderately rough surfaces ($Ra{\approx}500\;nm$), roughness measurements obtained with WLI and the stylus method seem to provide close agreement on the same roughness samples. For surface roughness measurements in the 50 nm to 300 nm range of Ra, discrepancies between WLI and the stylus method are observed. In some cases the discrepancy is as large as 109% of the value obtained with the stylus method. By contrast, the PSI results are in good agreement with those of the stylus technique.

An S-Band Multifunction Chip with a Simple Interface for Active Phased Array Base Station Antennas

  • Jeong, Jin-Cheol;Shin, Donghwan;Ju, Inkwon;Yom, In-Bok
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.378-385
    • /
    • 2013
  • An S-band multifunction chip with a simple interface for an active phased array base station antenna for next-generation mobile communications is designed and fabricated using commercial 0.5-${\mu}m$ GaAs pHEMT technology. To reduce the cost of the module assembly and to reduce the number of chip interfaces for a compact transmit/receive module, a digital serial-to-parallel converter and an active bias circuit are integrated into the designed chip. The chip can be controlled and driven using only five interfaces. With 6-bit phase shifting and 6-bit attenuation, it provides a wideband performance employing a shunt-feedback technique for amplifiers. With a compact size of 16 $mm^2$ ($4mm{\times}4mm$), the proposed chip exhibits a gain of 26 dB, a P1dB of 12 dBm, and a noise figure of 3.5 dB over a wide frequency range of 1.8 GHz to 3.2 GHz.

Development of Clutch Auto Calibration Algorithm for Automatic Transmission Shift Quality Improvement (자동변속기 변속품질 향상을 위한 클러치 자동보정 알고리즘 개발)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.17 no.3
    • /
    • pp.47-56
    • /
    • 2020
  • As a shift control of automatic transmission was managed with the electronic control unit (ECU), shift quality which is a measure of shift shock during gear change has markedly improved. However, the initial clutch pressure control of the clutch filling phase should continue to rely on the predetermined control input since the input and output speeds are unchanged until the shifting process attains the inertia phase. It is critical to minimize the clutch response time and control the clutch pressure accurately at the end of clutch fill to achieve quick shift response and smoothness. Advanced transmission companies have adopted an auto calibration method which establishes the databases for the clutch piston fill-up attributes and the frictional characteristics of the disks. In this study, a distinctive auto calibration algorithm for forklift transmission under development is proposed and verified with the real-vehicle test. The experimental calibration results showed consistent turbine dynamics at the initial stage of shifts with the properly calibrated clutch-fill control parameters. By using this technique, it is necessary to finalize the shift control for the various operation conditions.

Optical-fiber Electronic Speckle Pattern Interferometry for Quantitative Measurement of Defects on Aluminum Liners in Composite Pressure Vessels

  • Kim, Seong Jong;Kang, Young June;Choi, Nak-Jung
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.50-56
    • /
    • 2013
  • Optical-fiber electronic speckle pattern interferometry (ESPI) is a non-contact, non-destructive examination technique with the advantages of rapid measurement, high accuracy, and full-field measurement. The optical-fiber ESPI system used in this study was compact and portable with the advantages of easy set-up and signal acquisition. By suitably configuring the optical-fiber ESPI system, producing an image signal in a charge-coupled device camera, and periodically modulating beam phases, we obtained phase information from the speckle pattern using a four-step phase shifting algorithm. Moreover, we compared the actual defect size with that of interference fringes which appeared on a screen after calculating the pixel value according to the distance between the object and the CCD camera. Conventional methods of measuring defects are time-consuming and resource-intensive because the estimated values are relative. However, our simple method could quantitatively estimate the defect length by carrying out numerical analysis for obtaining values on the X-axis in a line profile. The results showed reliable values for average error rates and a decrease in the error rate with increasing defect length or pressure.