• Title/Summary/Keyword: Phase-shedding

Search Result 84, Processing Time 0.044 seconds

Time-Resolved Two-Phase PIV Measurements of Freely Rising Bubble Flows with an Image Separation Method (단일 카메라의 영상분리를 이용한 자유 상승 기포의 고속 이상 유동 PIV 계측)

  • Sung Jaeyong;Park Sang Min;Yoo Jung Yul
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.1
    • /
    • pp.39-45
    • /
    • 2004
  • A time-resolved two-phase PIV system using a single camera has been developed, which introduces a method of image separation into respective phase images, and is applied to freely rising single bubble. Gas bubble, tracer particle and background have different gray intensity ranges on the same image frame when reflection and dispersion in the phase interface are intrinsically eliminated by optical filters and fluorescent particles. Further, the signals of the two phases do not interfere with each other. Gas phase velocities are obtained from the separated bubble image by applying the two-frame PTV. On the other hand, liquid phase velocities are obtained from the tracer particle image by applying the cross-correlation algorithm. As a result, the bubble rises rectilinearly just after it is released from an injector and then has a zigzag motion in the far field. From the trajectory of the bubble, it is found that the period of the zigzag motion is closely related to the vortex shedding although the wavelength of it varies along its movement.

  • PDF

Feedback Control of a Circular Cylinder Wake with Rotational Oscillation (주기적 회전을 이용한 원봉 후류의 되먹임 제어)

  • Baek, Seung-Jin;Sung, Hyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.265-270
    • /
    • 2001
  • This study presents a feedback control methodology for suppression of the vortex shedding from a circular cylinder in a uniform flow. A rotational oscillation is applied as a controlled forcing and the lift coefficient ($C_L$) is used as a feedback signal. A feedback control concept is made based on the phase relation between the rotation velocity and $C_L$ at 'lock-on', The phase between the forcing and the vortex formation is changed $180^{\circ}$ from the phase of enhancing the lock-on state. This concept is examined by solving the Van del Pol equation. The results are satisfactory.

  • PDF

OPERATION MODES ANALYSIS FOR A DVR IN DISTRIBUTION GRIDS

  • Kim, Hyo-Sung;Kim, Pederson John
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.480-483
    • /
    • 2001
  • Recent power quality measurement projects report that voltage sags are the most frequent disturbances in the sites [1]-[4]. DVRs were emerged as the best effective and economic solution for this problem [11]. This paper analyzed the power flow of a DVR in distribution grids. This paper showed various operation modes and boundaries such as inductive operation, capacitive operation, and minimal power operation beside the in-phase compensation.

  • PDF

Study On The Characteristic Of System Fluctuation Under Large Generator Unit Outage (대전원타락사고시의 계통동요특성 해석)

  • 송길영;이종훈;김영창
    • 전기의세계
    • /
    • v.24 no.2
    • /
    • pp.71-77
    • /
    • 1975
  • This paper describes the results of a study for the stability of power system when the Kori Nuclear #1 P/P is operated with existing system. First, a transient disturbance, which effects the stability of entire power system, was analysed and to cope with the problem a load shedding method was studied to recover the fluctuation of the power system. Second, transient stability problem was studied when three phase fault occurs in 345 Extra High Voltage power System, and from this result, it was found to be highly effective that high speed protecting device should be provided and operated to recover the fault.

  • PDF

Direct Numerical Simulation of the Flow Past an Oscillating Circular Cylinder (진동하는 원주주위 유동의 직접수치해석)

  • Kang S. J.;Tanahashi M.;Miyauchi T.;Lee Y. H.
    • Journal of computational fluids engineering
    • /
    • v.6 no.4
    • /
    • pp.26-34
    • /
    • 2001
  • The flow past a circular cylinder forced to vibrate transversely is numerically simulated by solving the two-dimensional Navier-Stokes equations modified by the vibration velocity of a circular cylinder at a Reynolds number of 164. The higher-order finite difference scheme is employed for the spatial discretization along with the second order Adams-Bashforth and the first order backward-Euler time integration. The calculated cylinder vibration frequency is between 0.60 and 1.30 times of the natural vortex-shedding frequency. The calculated oscillation amplitude extends to 25% of the cylinder diameter and in the case of the lock-in region it is 60%. It is made clear that the cylinder oscillation has influence on the wake pattern, the time histories of the drag and lift forces, power spectral density and phase diagrams, etc. It is found that these results include both the periodic (lock-in) and the quasi-periodic (non-lock-in) state. The vortex shedding frequency equals the driving frequency in the lock-in region but is independent in the non-lock-in region. The mean drag and the maximum lift coefficient increase with the increase of the forcing amplitude in the lock-in state. The lock-in boundaries are also established from the present direct numerical simulation.

  • PDF

Direct Numerical Simulation of the Flow Past an Oscillating Circular Cylinder (진동하는 원주주위 유동의 직접수치해석)

  • KANG Shin-Jeong;TANAHASHI Mamoru;MIYAUCHI Toshio;NAM Cheong-Do;LEE Young-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.181-188
    • /
    • 2001
  • The flow past a circular cylinder forced to vibrate transversely is numerically simulated by solving the two-dimensional Wavier-Stokes equations modified by the vibration velocity of a circular cylinder at a Reynolds number of 164. The higher-order finite difference scheme is employed for the spatial discretization along with the second order Adams-Bashforth and the first order backward-Euler time integration. The calculated cylinder vibration frequency is between 0.60 and 1.30 times of the natural vortex-shedding frequency. The calculated oscillation amplitude extends to $25\%$ of the cylinder diameter and in the case of the lock-in region it is $60\%$. It is made clear that the cylinder oscillation has influence on the wake pattern, the time histories of the drag and lift forces, power spectral density and phase diagrams, etc. It is found that these results include both the periodic (lock-in) and the quasi-periodic (non-lock-in) state. The vortex shedding frequency equals the driving frequency in the lock-in region but is independent in the non-lock-in region. The mean drag and the maximum lift coefficient increase with the increase of the forcing amplitude in the lock-in state. The lock-in boundaries are also established from the present direct numerical simulation.

  • PDF

EFFECTS OF THE FREE SURFACE ON THE FLOW PATTERN PAST A SQUARE CYLINDER (정방형 실린더 주위 유동패턴에 대한 자유수면의 영향)

  • Ahn, Hyungsu;Yang, Kyung-Soo
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.81-87
    • /
    • 2017
  • The characteristics of flow past a square cylinder submerged under the free surface have been numerically studied. An immersed boundary method was adopted for implementation of the cylinder cross-section in a Cartesian grid system. Also, a level-set method was used to capture the interface of the two fluids. The case for Reynolds number 150 was examined. At the specific Reynolds number, by varying the gap ratio(0.25, 0.40, 0.55, 0.70, 1.00, 1.50, 2.50, 5.00) the effects of the free surface on the force coefficients and Strouhal number of vortex shedding were identified. The presence of the free surface very close to the cylinder significantly affects the shedding pattern, resulting in considerable deviation of the force coefficients and Strouhal number from those of the single-phase flow. In addition, the influence of Froude number was considered in this study. By increasing Froude number(0.2-0.4), flow topology change was identified at the specific gap ratios(0.40, 0.70, 1.50, 5.00).

NUMERICAL ANALYSIS OF CAVITATION WITH COMPRESSIBILITY EFFECTS AROUND HEMISPHERICAL HEAD-FORM BODY (반구형 전두부 실린더에서 발생하는 캐비테이션 유동의 압축성 효과에 대한 수치해석 연구)

  • Park, S.;Rhee, S.H.;Shin, B.R.
    • Journal of computational fluids engineering
    • /
    • v.18 no.4
    • /
    • pp.9-16
    • /
    • 2013
  • Cavitation on an axi-symmetric hemispherical head-form body was studied using an Reynolds-averaged Navier-Stokes equations solver based on a cell-centered finite volume method. To consider compressibility effects on the vapor phase and cavity interface, a pressure-based compressible flow CFD code was developed. To validate the developed CFD code, cavitating flow around the hemispherical head-form body was simulated using pressure-based incompressible and compressible CFD codes and validated against existing experimental data in the three-way comparison. The cavity shedding behavior, length of re-entrant jet, drag history, and Strouhal number of the hemispherical head-form body were compared between two CFD codes. The results, in this paper, suggested that the computations of cavitating flow with compressibility effects improve the description of cavity dynamics.

Flow Visualization by Light Emission in the Post-chamber of Hybrid Rocket (광도측정에 의한 하이브리드 로켓 후연소실의 유동 가시화)

  • Park, Kyung-su;Choi, Go Eun;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.677-683
    • /
    • 2015
  • Hybrid rocket combustion displays low frequency instability(LFI, 10~30Hz) at a certain condition. Vortex shedding in the post-chamber is suspected to cause the occurrence of LFI. This study focused on the visualization of flow image using light emissions from high temperature combustion gas. Results shows that combustion pressure oscillates at a frequency of about 18 Hz, which is in phase with oscillations of light emission. Since LFI is not a property of thermo-acoustic instability, this result suggested there exists a physical coupling of pressure fluctuations with light emissions proportional to chemical reaction. Also POD analysis shows that dominant symmetric spatial modes in the stable combustion shift suddenly into asymmetric spatial pattern with the appearance of LFI. Especially, the appearance of mode 3 is a typical change of flow dynamics in unstable combustion representing a rotational fluid motions associated with vortex shedding.