• 제목/요약/키워드: Phase-contrast x-ray imaging

검색결과 31건 처리시간 0.03초

X-ray PIV Measurements of Velocity Field of Blood Flows

  • Lee, Sang-Joon;Kim, Guk-Bae
    • International Journal of Vascular Biomedical Engineering
    • /
    • 제4권1호
    • /
    • pp.1-8
    • /
    • 2006
  • The x-ray PIV method was improved for measuring quantitative velocity fields of real blood flows using a coherent synchrotron x-ray source. Without using any contrast media or seeding particles, this method can visualize flow pattern of blood by enhancing the phase-contrast and interference characteristics of blood cells based on a synchrotron x-ray imaging mechanism. The enhanced x-ray images were achieved by optimizing the sample-to-scintillator distance, the sample thickness, and hematocrit. The quantitative velocity fields of blood flows inside opaque tubes were obtained by applying a 2-frame PIV algorithm to the x-ray images of the blood flows. The measured velocity field data show typical features of blood flows such as the yield stress effect. The non-Newtonian flow characteristics of blood flows were analyzed using the x-ray PIV method and the experimental results were compared with hemodynamic models.

  • PDF

Synchrotron X-ray 미세영상기법을 이용한 식물 목질부 내부 수액 유동의 계측 (Flow Measurement in Xylem Vessels of a Bamboo Leaf Using Synchrotron X-ray Micro Imaging)

  • 김양민;이상준
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2003년도 추계학술대회 논문집
    • /
    • pp.83-86
    • /
    • 2003
  • Synchrotron X-ray micro imaging technique was employed to non-invasively monitor the water flow inside xylem vessels in a bamboo leaf. The phase contrast X-ray images clearly visualized plant anatomy and the rise of a water front inside the vessels. Consecutive X-ray images taken for 60 seconds revealed water rise kinetics against gravity in the xylem of a cut dry leaf taken from a bamboo tree. For the first time, traces of water rise, variation of contact angle between water and xylem wall as well as the internal structure of xylem were obtained. In xylem vessels, a repeating flow pattern has a typical flow velocity of $30.7{\mu}m/s$ and faster flow is established intermittently. It is concluded that the transmission type of X-ray micro imaging can be used as a powerful tool to investigate the ascent of sap in the xylem vessels at a resolution higher than that of MRI.

  • PDF

X-ray 미세영상기법을 이용한 식물 목질부 내부 수액 유동의 계측 (In Vivo Visualization of Flow in Xylem Vessels of a Bamboo Using X-ray Micro-imaging Technique)

  • 김양민;이상준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1693-1696
    • /
    • 2004
  • Synchrotron X-ray micro-imaging technique was employed to monitor non-invasively the refilling process of water inside the xylem vessels in bamboo leaves. The consecutive phase-contrast X-ray images clearly show both plant anatomy and the transport of water inside the xylem vessels. Traces of water-rise, vapor bubbles and variations of contact angle between the water front and the xylem wall were measured in real time. During the refilling process, air bubbles are removed when the rising water front halts at a vessel end for a while. Subsequently, it starts rising again at a higher velocity than the normal refilling speed. Repeated cavitation seems to deteriorate the refilling ability in xylem vessels. In dark environment, the water refilling process in xylem vessels is facilitated more effectively than in bright illuminated conditions. Finally, X-ray micro-imaging was famed to be a powerful, high resolution, real time imaging tool to investigate the water refilling process in xylem vessels.

  • PDF

X-ray PTV 기법을 이용한 불투명 튜브 내부의 미세기포의 크기 및 속도 동시 측정 (Simultaneous Measurement of Size and Velocity of Microbubbles inside Opaque Tube Using X-ray PTV Technique)

  • 김석;이상준
    • 한국가시화정보학회지
    • /
    • 제4권2호
    • /
    • pp.69-75
    • /
    • 2006
  • The microbubbles were used in various fields, such as turbulent control, drag reduction, material science and life science. The X-ray PTV using X-ray micro-imaging technique was employed to mea-sure the size and velocity of micro-bubbles moving in an opaque tube simultaneously. Micro-bubbles of $10{\sim}60{\mu}m$ diameter moving upward in an opaque tube (${\phi}$=2.7mm) were tested. Due to the different refractive indices of water and air, phase contrast X-ray images clearly show the exact size and shape of over-lapped microbubbles. In all of the working fluids tested (deionized water, tap water, 0.01 and 0.10M NaCl solutions), the measured terminal velocity of the microbubbles rising through the solution was proportional to the square of the bubble diameter. The rising velocity was increased with increasing mole concentration. The microbubble can be useful as contrast agent or tracer in life science and biology. The X-ray PTV technique should be able to extract useful information on the behavior of various bio/microscale fluid flows that are not amenable to analysis using conventional methods.

  • PDF

Synchrotron X-ray 미세영상기법을 이용한 식물 목질부 내부 수액 유동의 계측 (In Vivo Visualization of Flow in Xylem Vessels of a Bamboo Leaf Using Synchrotron X-ray Micro Imaging Technique)

  • 김양민;이상준
    • 대한기계학회논문집B
    • /
    • 제27권11호
    • /
    • pp.1612-1617
    • /
    • 2003
  • Synchrotron X-ray micro imaging technique was employed to non-invasively monitor the water flow inside xylem vessels in a bamboo leaf. The phase contrast X-ray images clearly visualized plant anatomy and the rise of a water front inside the vessels. Consecutive X-ray images taken for 60 seconds revealed water rise kinetics against gravity in the xylem of a cut dry leaf taken from a bamboo tree. For the first time, traces of water rise, variation of contact angle between water and xylem wall as well as the internal structure of xylem were obtained. In xylem vessels, a repeating flow pattern has a typical flow velocity of 30.7$\mu\textrm{m}$/s and faster flow is established intermittently. It is concluded that the transmission type of X-ray micro imaging can be used as a powerful tool to investigate the ascent of sap in the xylem vessels at a resolution higher than that of MRI.

X선 위상차 가시화 기법을 이용한 GDI 인젝터 노즐 근방의 분무 간 상호간섭 해석 (Analyzing the Spray-to-spray Interaction of GDI Injector Nozzle in the Near-field Using X-ray Phase-Contrast Imaging)

  • 배규한;문석수
    • 한국분무공학회지
    • /
    • 제25권2호
    • /
    • pp.60-67
    • /
    • 2020
  • Despite its benefit in engine thermal efficiency, gasoline-direct-injection (GDI) engines generate substantial particulate matter (PM) emissions compared to conventional port-fuel-injection (PFI) engines. One of the reasons for this is that the spray collapse caused by the spray-to-spray interaction forms the locally rich fuel-air mixture and increases the fuel wall film. Previous studies have investigated the spray collapse phenomenon through the macroscopic observation of spray behavior using laser optical techniques, but it is somewhat difficult to understand the interaction between sprays that is initiated in the near-nozzle region within 10 mm from the nozzle exit. In this study, the spray structure, droplet size and velocity data were obtained using an X-ray imaging technique from the near-nozzle to the downstream of the spray to investigate the spray-to-spray interaction and discuss the effects of spray collapse on local droplet size and velocity distribution. It was found that as the ambient density increases, the spray collapse was promoted due to the intensified spray-to-spray interaction, thereby increasing the local droplet size and velocity from the near-nozzle region as a result of droplet collision/coalescence.

격자간섭계를 위한 탈봇 패턴 연구 (Study on Talbot Pattern for Grating Interferometer)

  • 김영주;오오성;김종열;이승욱
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제38권1호
    • /
    • pp.39-49
    • /
    • 2015
  • 격자 간섭계(grating interferometer)는 방사선 영상분야의 새로운 기술로서, 흡수 영상(absorption imaging)뿐만 아니라 위상차 영상(phase contrast imaging)과 다크필드 영상(dark field imaging)을 제공한다. 격자 간섭계는 크게 탈봇 효과(talbot effect)를 이용하는 탈봇 간섭계와 탈봇-라우 효과(talbot-lau effect)를 이용하는 탈봇-라우 간섭계로 나뉘는데, 일반적인 방사선 영상시스템과 달리 방사선의 간섭을 예측하고 적용하는 것이 중요하다. 본 연구에서는 현재 부산대학교 중성자 및 방사선 공학 연구실에서 보유하고 있는 엑스선 격자 세트와 중성자 격자 세트를 이용하여 탈봇 간섭 패턴 및 탈봇-라우 간섭 패턴을 제작하였다. 이를 통해 방사선의 파동 거동에 따른 간섭 세기의 변화를 예측하고, 격자 간섭계를 구성하는 각 요소들을 계산했다. 그리고 격자의 종류 및 위상차 물체에 대한 탈봇 간섭 패턴 및 탈봇-라우 간섭 패턴을 예측하였다.

Basic Physical Principles and Clinical Applications of Computed Tomography

  • Jung, Haijo
    • 한국의학물리학회지:의학물리
    • /
    • 제32권1호
    • /
    • pp.1-17
    • /
    • 2021
  • The evolution of X-ray computed tomography (CT) has been based on the discovery of X-rays, the inception of the Radon transform, and the development of X-ray digital data acquisition systems and computer technology. Unlike conventional X-ray imaging (general radiography), CT reconstructs cross-sectional anatomical images of the internal structures according to X-ray attenuation coefficients (approximate tissue density) for almost every region in the body. This article reviews the essential physical principles and technical aspects of the CT scanner, including several notable evolutions in CT technology that resulted in the emergence of helical, multidetector, cone beam, portable, dual-energy, and phase-contrast CT, in integrated imaging modalities, such as positron-emission-tomography-CT and single-photon-emission-computed-tomography-CT, and in clinical applications, including image acquisition parameters, CT angiography, image adjustment, versatile image visualizations, volumetric/surface rendering on a computer workstation, radiation treatment planning, and target localization in radiotherapy. The understanding of CT characteristics will provide more effective and accurate patient care in the fields of diagnostics and radiotherapy, and can lead to the improvement of image quality and the optimization of exposure doses.

레이저 플라즈마 기반의 생물의료용 연 X-선 현미경 설계 (Conceptual Design of Laser Plasma-based Soft X-ray Microscope system for Biomedical Application)

  • 김경우;윤권하
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.690-693
    • /
    • 2003
  • Soft x-ray microscopy provides a unique set of capabilities in-between those of visible light and electron microscopy. It has long been recognized that nature provides a 'water window' spectral region between the K shell x-ray absorption edges of carbon (~290eV) and oxygen (~540eV), where organic materials show strong absorption and phase contrast, while water is relatively non-absorbing. This enables imaging of hydrated biological specimens that are several microns thick with high intrinsic contrast using x-rays with a wavelength of 2.3~4.4nm. Soft X-ray microscopy is therefore well suited to the study of specimens like single biological cells. The most direct advantage of X-ray microscope is their high spatial resolution when compared with visible light microscopes, combined with an ability to image hydrated specimens that are several microns with a minimum of preparation. Our study describes the conceptual design of soft x-ray microscope system based on a laser-based source for biomedical application with high resolution ($\leq$50nm) and short exposure time ($\leq$30sec).

  • PDF

X-ray 영상기법을 이용한 비소 흡수가 고사리 내부 수액 거동에 미치는 영향 연구 (X-ray Micro-imaging of Arsenic Absorption of Sap Flow in Xylem Vessels of Pteris)

  • 이진평;이상준
    • 한국가시화정보학회지
    • /
    • 제5권1호
    • /
    • pp.30-36
    • /
    • 2007
  • The global environment is deteriorating at an alarming rate, despite of enhanced international environmental regulation. Many studies have been performed to reduce toxic pollutants. Recently, plant-based phytoremediation technology for moving toxic contaminants from soil and water has been receiving large attention. Arsenic-contaminated soil is one of the major pollutant sources for drinking water. Pteris erotica has been known as a hyper-accumulator of arsenic from soils. In this study, we investigated the effect of arsenic absorption on sap flow inside xylem vessels of Pteris. The synchrotron X-ray micro-imaging technique was employed to monitor the refilling process of water containing arsenic inside the xylem vessels of Pteris's leaves and stems non-invasively. The captured phase-contrast X-ray images show both anatomy of internal structure and transport of water inside Pteris. The exposure of Pteris to arsenic solution was found to increase largely the water raise speed in xylem vessels. The present results would provide important information needed for understanding the mechanisms of accumulation and transportation of toxic materials in plants.