• Title/Summary/Keyword: Phase-Averaged

Search Result 277, Processing Time 0.027 seconds

Optimization of the anti-snow performance of a high-speed train based on passive flow control

  • Gao, Guangjun;Tian, Zhen;Wang, Jiabin;Zhang, Yan;Su, Xinchao;Zhang, Jie
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.325-338
    • /
    • 2020
  • In this paper, the improvement of the anti-snow performance of a high-speed train (HST) is studied using the unsteady Reynolds-Averaged Navier-Stokes simulations (URANS) coupled with the Discrete Phase Model (DPM). The influences of the proposed flow control scheme on the velocity distribution of the airflow and snow particles, snow concentration level and accumulated mass in the bogie cavities are analyzed. The results show that the front anti-snow structures can effectively deflect downward the airflow and snow particles at the entrance of the cavities and alleviate the strong impact on the bogie bottom, thereby decrease the local accumulated snow. The rotational rear plates with the deflecting angle of 45° are found to present well deflecting effect on the particles' trajectories and force more snow to flow out of the cavities, and thus significantly reduce the accretion distribution on the bogie top. Furthermore, running speeds of HST are shown to have a great effect on the snow-resistance capability of the flow control scheme. The proposed flow control scheme achieves more snow reduction for HST at higher train's running speed in the cold regions.

A study on flow characteristics of laminar oscillatory flows in a square-sectional $180^{\circ}C$ curved duct (정사각단면 $180^{\circ}C$ 곡덕트에서 층류진동유동의 유동 특성에 관한 연구)

  • Park, Gil-Mun;Jo, Byeong-Gi;Bong, Tae-Geun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.2
    • /
    • pp.139-152
    • /
    • 1998
  • In the present study, the flow characteristics of developing laminar oscillatory flows in a square -sectional 180 deg. curved duct are investigated experimentally. The experimental study using air in a square-sectional 180 deg. curved duct is carried out to measure velocity distributions with a data acquisition and LDV (Laser Doppler Velocimetry) processing system. In this system, Rotating Machinery Resolver (RMR) and PHASE program are used to obtain the results of unsteady flows. The major flow characteristics of developing oscillatory flows are found by analyzing velocity curves, mean velocity profiles, time-averaged velocity distribution of secondary flow, wall shear stress distributions, and entrance lengths. In a lower dimensionless angular frequency, the axial velocity distribution of laminar oscillatory flow in a curved duct shows a convex shape in a central part and axial symmetry. The maximum value of wall shear stress in a lower dimensionless angular frequency is located in an outside wall, but according to increasing the dimensionless angular frequency, the maximum of wall shear stress is moved to inner wall. The entrance lengths of laminar oscillatory flows in a square-sectional 180 deg. curved duct is obtained to 90 deg. of bended angle of duct in this experimental conditions.

Biocompatible Dispersion Methods for Carbon Black

  • Kim, Hwa;Park, Kwangsik;Lee, Moo-Yeol
    • Toxicological Research
    • /
    • v.28 no.4
    • /
    • pp.209-216
    • /
    • 2012
  • The biological activity of particles is largely dependent on their size in biological systems. Dispersion in the aqueous phase has been both a critical impediment to and a prerequisite for particle studies. Carbon black has been used as a surrogate to investigate the biological effects of carbonaceous particles. Here, biocompatible methods were established to disperse carbon black into ultrafine and fine particles which are generally distinguished by the small size of 100 nm. Carbon black with a distinct particle size, N330 and N990 were suspended in blood plasma, cell culture media, Krebs-Ringer's solution (KR), or physiological salt solution (PSS). Large clumps were observed in all dispersion preparations; however, sonication improved dispersion - averaged particle sizes for N330 and N990 were $85.0{\pm}42.9$ and $112.4{\pm}67.9$ nm, respectively, in plasma; the corresponding sizes in culture media were $84.8{\pm}38.4$ and $164.1{\pm}77.8$ nm. However, sonication was not enough to disperse N330 less than 100 nm in either KR or PSS. Application of Tween 80 along with sonication reduced the size of N330 to less than 100 nm, and dispersed N990 larger than 100 nm ($73.6{\pm}28.8$ and $80.1{\pm}30.0$ nm for N330 and $349.5{\pm}161.8$ and $399.8{\pm}181.1$ nm for N990 in KR and PSS, respectively). In contrast, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) exhibited little effect. Electron microscopy confirmed the typical aciniform structure of the carbon arrays; however, zeta potential measurement failed to explain the dispersibility of carbon black. The methods established in this study could disperse carbon black into ultrafine and fine particles, and may serve as a useful model for the study of particle toxicity, particularly size-related effects.

On the Feasibility of Freak Waves Formation within the Harbor Due to the Presence of Infra-Gravity Waves of Bound Mode Underlying the Ever-Present Swells (Bound Mode의 외중력파에 의한 항내 이상파 생성가능성에 대하여)

  • Cho, Yong Jun;Bae, Jung Hyun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.1
    • /
    • pp.17-27
    • /
    • 2019
  • We carry out the numerical simulation to test a hypothesis that freak waves can be triggered by the infragravity waves of bound mode underlying the ever-present swells and its constructive interaction with swells using the Tool Box called the ihFoam that has its roots on the OpenFoam, and Bi-spectrum. Numerical simulation is implemented for the SamChcuk LNG Plant where freak waves have been reported in front of the private wharf during its construction phase due to the uncompleted northern breakwater. Infra-gravity waves of bound mode is generated using the difference wave-wave interaction between the local wind waves of 7 s and a swell of 11.4 s based on the Bi-spectrum. For the sake of comparison, numerical simulation for infra-gravity waves of free mode is also carried out. Numerical results show that stem waves along the private wharf for SamChcuk LNG Plant can be triggered by the infra-gravity waves of bound mode coming from the north, which eventually leads to freak waves when encounters the reflected waves from the south jetty.

Cone-beam computed tomography-guided three-dimensional evaluation of treatment effectiveness of the Frog appliance

  • Li, Mujia;Su, Xiaoxia;Li, Yang;Li, Xianglin;Si, Xinqin
    • The korean journal of orthodontics
    • /
    • v.49 no.3
    • /
    • pp.161-169
    • /
    • 2019
  • Objective: To evaluate the effectiveness of the Frog appliance in three dimensions by using cone-beam computed tomography (CBCT) images. Methods: Forty patients (21 boys and 19 girls), averaged 11.7 years old, with an Angle Class II division 1 malocclusion were included in our study. They had either late mixed dentition or early permanent dentition, and the maxillary second molars had not yet erupted. All patients underwent CBCT before and after the treatment for measuring changes in the maxillary first molars, second premolars, central incisors, and profile. Paired-samples t-test was used to compare the mean difference in each variable before treatment and after the first phase of treatment. Results: The maxillary first molars were effectively distalized by 4.25 mm (p < 0.001) and 3.53 mm (p < 0.05) in the dental crown and root apex, respectively. The tipping increased by $2.25^{\circ}$, but the difference was not significant. Moreover the teeth moved buccally by 0.84 mm (p < 0.05) and 2.87 mm (p < 0.01) in the mesiobuccal and distobuccal cusps, respectively, whereas no significant changes occurred in the root apex. Regarding the anchorage parts, the angle of the maxillary central incisor's long axis to the sella-nasion plane increased by $2.76^{\circ}$ (p < 0.05) and the distance from the upper lip to the esthetic plane decreased by 0.52 mm (p = 0.01). Conclusions: The Frog appliance effectively distalized the maxillary molars with an acceptable degree of tipping, distobuccal rotation, and buccal crown torque, with only slight anchorage loss. Furthermore, CBCT image demonstrated that it is a simple and reliable method for three-dimensional analysis.

Development of Simulation Method of Doppler Power Spectrum and Raw Time Series Signal Using Average Moments of Radar Wind Profiler (윈드프로파일러의 평균모멘트 값을 이용한 도플러 파워 스펙트럼 및 시계열 원시신호 시뮬레이션기법 개발)

  • Lee, Sang-Yun;Lee, Gyu-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1037-1044
    • /
    • 2020
  • Since radar wind profiler (RWP) provides wind field data with high time and space resolution in all weather conditions, their verification of the accuracy and quality is essential. The simultaneous wind measurement from rawinsonde is commonly used to evaluate wind vectors from RWP. In this study, the simulation algorithm which produces the spectrum and raw time series (I/Q) data from the average values of moments is presented as a step-by-step verification method for the signal processing algorithm. The possibility of the simulation algorithm was also confirmed through comparison with the raw data of LAP-3000. The Doppler power spectrum was generated by assuming the density function of the skew-normal distribution and by using the moment values as the parameter. The simulated spectrum was generated through random numbers. In addition, the coherent averaged I/Q data was generated by random phase and inverse discrete Fourier transform, and raw I/Q data was generated through the Dirichlet distribution.

Uniform large scale cohesionless soil sample preparation using mobile pluviator

  • Jamil, Irfan;Ahmad, Irshad;Ullah, Wali;Junaid, Muhammad;Khan, Shahid Ali
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.521-529
    • /
    • 2022
  • This research work deals with the development of air pluviation method for preparing uniform sand specimens for conducting large scale laboratory testing. Simulating real field conditions and to get reliable results, air pluviation method is highly desirable. This paper presents a special technique called air pluviation or sand raining technique for achieving uniform relative density. The apparatus is accompanied by a hopper, shutters with different orifice sizes and numbers and set of sieves. Before using this apparatus, calibration curves are drawn for relative density against different height of fall (H) and shutter sizes. From these calibration curves, corresponding to the desired relative density of 60%, the shutter size of 13mm and height of fall of 457.2 mm, are selected and maintained throughout the pluviation process. The density obtained from the mobile pluviator is then verified using the Dynamic Cone Penetrometer (DCP) test where the soil is poured in the box using defined shutter size and fall height. The results obtained from the DCP test are averaged as 60±0.5 which was desirable. The mobile pluviator used in this research is also capable of obtaining relative densities up to 90%. The instrument is validated using experimental and numerical approach. In numerical study, Plaxis 3D software is used in which the soil mass is defined by 10-Node tetrahedral elements and 6-Node plate is used to simulate plate behavior in the validation phase. The results obtained from numerical approach were compared with that of experimental one which showed very close correlation.

Comparison of Ankle Angle and Lower extremity Muscle Activities Between Forefoot Strike, Heelfoot strike During the Stair Ascent Walking (계단 오름 보행 시 전족, 후족 착지 방법에 따른 하지의 근활성도와 발목 각도 비교)

  • Jun-Su Kim;Hyun-Jun Kim;Sang-Yeol Lee
    • PNF and Movement
    • /
    • v.22 no.1
    • /
    • pp.31-41
    • /
    • 2024
  • Purpose: The purpose of this study is to compare lower extremity muscle activities and ankle joint angles between different foot strike patterns (forefoot strike, heelfoot strike) during stair ascent walking. Methods: The subjects of this study were 22 males who walked in each foot strike pattern on ascent stairs at a speed of 85 beats/min. During stair walking with the two types of foot strike patterns, the muscle activities of the rectus femoris, tibialis anterior, medial gastrocnemius, hamstring, and gluteus medius were measured. Additionally, ankle joint angles for inversion, eversion, dorsi flexion, and plantar flexion were recorded. Each participant underwent the experiment three times, with the foot strike pattern randomized. Results were averaged according to the foot strike pattern. Results: Significant differences in ankle angles were observed across all phases according to foot strike pattern. Muscle activities in the lower extremities showed significant differences in all phases except the swing 1 phase. Moreover, differences in foot movement trajectory were noted depending on the foot strike pattern. Conclusion: Walking on ascent stairs elicited differences in lower extremity muscle activities and ankle joint angles based on foot strike pattern. These findings can serve as foundational data for selecting a suitable foot strike pattern tailored to individual patient conditions when training patients in walking on ascent stairs.

Measurement of Microbial Protein Supply in Murrah Buffaloes (Bubalus bubalis) Using Urinary Purine Derivatives Excretion and PDC Index

  • Dipu, M.T.;George, S.K.;Singh, P.;Verma, A.K.;Mehra, U.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.3
    • /
    • pp.347-355
    • /
    • 2006
  • A study was conducted to predict the rumen microbial protein production based on urinary excretion of purine derivatives in buffaloes fed a diet of wheat straw and concentrate (40:60) at four fixed levels of feed intake. (95, 80, 60 and 40% of preliminary voluntary feed intake) following experimental protocol of IAEA (Phase I). The buffaloes were allocated according to a $4{\times}4$ latin square design. The urinary allantoin, uric acid, total PD excretion (mmol/d) in treatments L-95, L-80, L-60 and L-40 was 20.13, 16.00, 12.96 and 9.17; 1.88, 2.12, 2.11 and 2.15; 22.01, 18.12, 15.07 and 11.32, respectively and were significantly (p<0.05) different among treatments except for uric acid. The rate of PD excretion (mmol/d) was positively correlated with the digestible organic matter intake. Variations were observed in PD and creatinine concentration in spot samples collected at 6-hour interval. However, daily PD:Creatinine ratio (PDC index) appears to be a reasonably good predictor of microbial-N supply. The contribution of basal purine excretion to total excretion of purine derivatives (PD) was determined in pre-fasting period followed by a fasting period of 6 d (Phase II). Daily PD and creatinine excretion (mmol/kg $W^{0.75}$) during fasting averaged 0.117 and 0.456 respectively for buffaloes. The excretion rates of PD decreased significantly (p<0.01) during fasting compare to pre-fasting period, the urinary creatinine excretion remained almost similar. Except for creatinine, plasma concentration of target parameters significantly (p<0.01) declined during fasting. Likewise, glomerular filtration rate (GFR) and renal clearance of allantoin and uric acid also decreased. Based on the PD excretion rates during fasting and at different levels of feed intake obtained in this study, a relationship between daily urinary PD excretion (Y-mmol) and microbial purine absorption (X-mmol) was developed for buffaloes as Y = 0.74X+0.117 kg $W^{0.75}$. The microbial N supply (g/kg DOMI) remained statistically similar irrespective of dietary treatment. The results showed that excretion of urinary purine derivatives is positively correlated with the levels of feed intake in Murrah buffaloes and thus, estimation of urinary purine derivatives and PDC index could be used to determine microbial nitrogen supply when there is large variation in level of feed intake.

Variability of Seawater Temperature in the Coastal Waters off the Dangjin Power Plant, Asan Bay, Korea (서해 아산만 당진화력발전소 인근해역 수온 변동 특성)

  • Ro, Young-Jae;Jun, Ho-Kyoung;Choi, Yang-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.2
    • /
    • pp.43-50
    • /
    • 2002
  • This study focused on variability of the sea water temperatures observed off the Dangjin Power Plant in the central west coast of Korea for the period of 1998-1999. Spatial averaged temperature shows the annual range of $20.3^{\circ}C$, with minimum of $3.3^{\circ}C$ in February and maximum of $23.6^{\circ}C$ in August. Horizontal distribution patterns are seasonally reversing: The temperatures are increasing toward inshore of the period of April to October, while they are increasing toward of offshore for the rest of year. Spectral analyses of temperature records show significant peaks at M2 and S2 tidal periods, since the water movement in the study area is influenced by strong tide. The responses of temperature variations to tidal phase show different seasonal characteristics: The temperatures are increasing at flood phases in winter and ebb phases in summer. Amplitudes of the components at M2 and S2 periods are $0.8^{\circ}C\;and\;0.5^{\circ}C$, accounting for 70-80% of daily variation. Coherency analyses between non-tidal components of temperature and wind speed show that in summer, northerly wind components significantly coherent with temperature at 2.8 days period, while in winter, southerly wind component is coherent with 2.4 days period, with 0.6 and 0.7 day phase-lags, respectively.