• Title/Summary/Keyword: Phase synchrony

Search Result 14, Processing Time 0.012 seconds

Increased Gamma-band Neural Synchrony by Pleasant and Unpleasant Visual Stimuli (긍정, 부정 감정 유발 시각자극에 의한 감마-대역 신경동기화 증가)

  • Yeo, Donghoon;Choi, Jeong Woo;Kim, Kyung Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.94-102
    • /
    • 2018
  • It is known that gamma-band activity (GBA) and phase synchrony (GBPS) are induced by emotional visual stimuli. However, the characteristics of GBA and GBPS according to different emotional states have not been identified. The purpose of this study is to investigate the changes in gamma-band neuronal synchronization induced by positive and negative emotional visual stimuli using electroencephalograms (EEGs). Thirteen healthy male subjects have participated in the experiment. The induced spectral power in gamma-band was the highest for negative stimuli, and the lowest for neutral stimuli in 300-2,000 ms after the stimulus onset. The inter-regional phase synchronization in gamma-band was increased in 500-2,000 ms, mainly between the bilateral frontal regions and the parieto-occipital regions. Larger number of significant connections were found by negative stimuli compared to positive ones. Judging from temporal and spatial characteristics of the gamma-band activity and phase synchrony increases, the results may imply that affective visual stimuli cause stronger memory encoding than non-emotional stimuli, and this effect is more significant for negative emotional stimuli than positive ones.

A Comparison between Executed and Imagined Movements in Phase Synchrony of EEG in humans with Stroke: A Preliminary Study (뇌졸중 환자의 EEG phase synchrony에 따른 움직임 및 운동의지비교: 예비 결과 분석)

  • Kim, Da-Hye;Park, Wanjoo;Kim, Yun-Hee;Kim, Sung-Phil;Kim, Leahyun;Kwon, Gyu-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.1661-1664
    • /
    • 2013
  • 본 연구는 만성 뇌졸중 환자 5 명을 대상으로 상지 운동(Affected hand의 주먹 쥐기/펴기운동)시 참가자의 운동의지와 운동 수행의 유무에 따라 차이가 있을 것을 가정하고, 운동 수행 및 운동의지가 존재하는 Active movement와 운동 수행을 하지만 운동의지가 없는 Passive movement, 운동 수행은 없지만 운동의지가 있는 Motor Imagery(MI)의 세가지 task에 따른 뇌파의 연결성을 비교하고자 한다. 이 때 EEG 영역 간의 연결성을 보기 위한 분석 방식 중 하나인 Phase locking value(PLV)를 통해 각 task 간의 차이를 비교 및 분석했다. 운동 수행은 동일하지만 운동의지 유무에 따른 차이는 Passive movement가 전반적으로 뇌 영역간 연결이 감소하고 Active movement가 motor task 시작 후 375ms를 기점으로 급격히 증가함을 보이는 데에서 발견할 수 있었으며, 운동 수행 유무에 따른 차이는 687.5ms 이후 Active movement에 비해 MI에서 뇌 영역 간 연결 수가 확연히 감소하는 데에서 큰 차이를 나타내었다. 이에 따라 본 연구에서는 만성 뇌졸중 환자의 상지운동 시의 motor task에 따른 EEG 영역간의 연결성을 토대로 운동의지 검출이 가능성이 있음을 밝혔다.

The Analysis of Gamma Oscillation and Phase-Synchronization for Memory Retrieval Tasks

  • Kim, Sung-Phil;Choe, Seong-Hyeon;Kim, Hyun-Taek;Lee, Seung-Hwan
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2010.05a
    • /
    • pp.37-41
    • /
    • 2010
  • The previous investigations of electroencephalogram (EEG) activity in the memory retrieval tasks demonstrated that event-related potentials (ERP) during recollection showed different durations and the peak levels from those without recollection. However, it has been unknown that recollection in memory retrieval also modulates high-frequency brain rhythms as well as establishes large-scale synchronization across different cortical areas. In this study, we examined the spectral components of the EEG signals, especially the gamma bands (20-80Hz), measured during the memory retrieval tasks. Specifically, we focused on two major spectral components: first, we evaluated the temporal patterns of the power spectral density before and after the onset of the memory retrieval task; second, we estimated phase synchrony between all possible pairs of EEG channels to evaluate large-scale synchronization. Fourteen healthy subjects performed the memory retrieval task in the virtual reality environment where they selected whether or not t he present item was seen in the previous training period. When the subjects viewed the unseen items, the middle gamma power (40-60Hz) appeared to increase 200-500ms after stimulus onset while the low gamma power (20Hz) was suppressed all the way through the post-stimulus period 150ms after onset. The degree of phase synchronization in this low gamma level, however, increased when the subjects fetched the item from memory. This suggests that phase synchrony analysis might reveal different aspects of the memory retrieval process than the gamma power, providing additional information to the inference on the brain dynamics during memory retrieval.

  • PDF

An Introduction to Quantitative Analyses of Sleep EEG Via a Wavelet Method (뇌Wavelet 방법론을 이용한 수면뇌파분석 고찰)

  • Kim, Jong-Won
    • Sleep Medicine and Psychophysiology
    • /
    • v.19 no.1
    • /
    • pp.11-17
    • /
    • 2012
  • Objective: Among various methods developed to quantitatively explore electroencephalograms (EEG), we focused on a wavelet method that was known to yield robust results under nonstationary conditions. The aim of this study was thus to introduce the wavelet method and demonstrate its potential use in clinical sleep studies. Method: This study involved artificial EEG specifically designed to validate the wavelet method. The method was performed to obtain time-dependent spectral power and phase angles of the signal. Synchrony of multichannel EEG was analyzed by an order parameter of the instantaneous phase. The standard methods, such as Fourier transformation and coherence, were also performed and compared with the wavelet method. The method was further validated with clinical EEG and ERP samples available as pilot studies at academic sleep centers. Result: The time-frequency plot and phase synchrony level obtained by the wavelet method clearly showed dynamic changes in the EEG waveforms artificially fabricated. When applied to clinical samples, the method successfully detected changes in spectral power across the sleep onset period and identified differences between the target and background ERP. Conclusion: Our results suggest that the wavelet method could be an alternative and/or complementary tool to the conventional Fourier method in quantifying and identifying EEG and ERP biomarkers robustly, especially when the signals were nonstationary in a short time scale (1-100 seconds).

Recognition of the Korean Character Using Phase Synchronization Neural Oscillator

  • Lee, Joon-Tark;Kwon, Yang-Bum
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.347-353
    • /
    • 2004
  • Neural oscillator can be applied to oscillator systems such as analysis of image information, voice recognition and etc, Conventional learning algorithms(Neural Network or EBPA(Error Back Propagation Algorithm)) are not proper for oscillatory systems with the complicate input patterns because of its too much complex structure. However, these problems can be easily solved by using a synchrony characteristic of neural oscillator with PLL(phase locked loop) function and a simple Hebbian learning rule, Therefore, in this paper, it will introduce an technique for Recognition of the Korean Character using Phase Synchronization Neural Oscillator and will show the result of simulation.

Recognition of the Korean Alphabet using Phase Synchronization of Neural Oscillator

  • Lee, Joon-Tark;Bum, Kwon-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.93-99
    • /
    • 2004
  • Neural oscillator can be applied to oscillatory systems such as analyses of image information, voice recognition and etc. Conventional EBPA (Error back Propagation Algorithm) is not proper for oscillatory systems with the complicate input`s patterns because of its tedious training procedures and sluggish convergence problems. However, these problems can be easily solved by using a synchrony characteristic of neural oscillator with PLL(Phase Locked Loop) function and by using a simple Hebbian learning rule. Therefore, in this paper, a technique for Recognition of the Korean Alphabet using Phase Synchronized Neural Oscillator was introduced.

Silicon transporter genes of Fragilariopsis cylindrus (Bacillariophyceae) are differentially expressed during the progression of cell cycle synchronized by Si or light

  • Oh, Han Sang;Lee, Sung-eun;Han, Chae-seong;Kim, Joon;Nam, Onyou;Seo, Seungbeom;Chang, Kwang Suk;Jin, EonSeon;Hwang, Yong-sic
    • ALGAE
    • /
    • v.33 no.2
    • /
    • pp.191-203
    • /
    • 2018
  • Fragilariopsis cylindrus is one of the most successful psychrophiles in the Southern Ocean. To investigate the molecular mechanism of biomineralization in this species, we attempted to synchronize F. cylindrus growth, since new cell wall formation is tightly coupled to the cell division process. Nutrient limitation analysis showed that F. cylindrus cultures rapidly stopped growing when deprived of silicate or light, while growth continued to a certain extent in the absence of nitrate. Flow cytometry analysis indicated that deprivation of either silicate or light could effectively arrest the cell cycle of this diatom species at the G1 phase, suggesting that synchrony can be established using either factor. Fluorescence labeling of new cell walls was faintly detectable as early as approximately 6 h after silicon repletion or light irradiation, and labeling was markedly intensified by 18 h. It is revealed that the synthesis of girdle bands begins before valve synthesis in this species, with active valve synthesis occurring during the G2 / M phase. Expression profiling revealed that selective member(s) of the F. cylindrus SIT genes (FcSIT) respond to silicate and light, with a different set of genes being responsive to each factor. The Si / light double depletion experiments demonstrated that expression of one FcSIT gene is possibly correlated to transition to G2 / M phase of the cell cycle, when the valve is actively formed.

A study for improvement of Recognition velocity of Korean Character using Neural Oscillator (신경 진동자를 이용한 한글 문자의 인식 속도의 개선에 관한 연구)

  • Kwon, Yong-Bum;Lee, Joon-Tark
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.491-494
    • /
    • 2004
  • Neural Oscillator can be applied to oscillatory systems such as the image recognition, the voice recognition, estimate of the weather fluctuation and analysis of geological fluctuation etc in nature and principally, it is used often to pattern recoglition of image information. Conventional BPL(Back-Propagation Learning) and MLNN(Multi Layer Neural Network) are not proper for oscillatory systems because these algorithm complicate Learning structure, have tedious procedures and sluggish convergence problem. However, these problems can be easily solved by using a synchrony characteristic of neural oscillator with PLL(phase-Locked Loop) function and by using a simple Hebbian learning rule. And also, Recognition velocity of Korean Character can be improved by using a Neural Oscillator's learning accelerator factor η$\_$ij/

  • PDF

Coherence Analysis of Jaw and Neck Muscle Coordination during Chewing in Healthy Adults

  • Ho-Jun Song;Sang-Ho Han;Ji-Yeon Kim;Yeong-Gwan Im
    • Journal of Oral Medicine and Pain
    • /
    • v.48 no.4
    • /
    • pp.159-168
    • /
    • 2023
  • Purpose: Coordinated activity between the jaw and neck muscles is important in oral motor tasks such as chewing. This study examined coherence between the jaw and neck muscles during chewing in healthy adults. Methods: A total of 12 healthy adults underwent electromyography (EMG) of the jaw and neck muscles during right-sided chewing at a frequency of 1 Hz. Surface electrodes were placed over the temporalis (TA), masseter (MS), anterior digastric (DA), and sternocleidomastoid (SM) muscles on the right side. EMG signals were processed for coherence and phase analysis using advanced signal processing techniques. Results: The MS and TA muscle pair exhibited high synchronization when chewing (median coherence=0.992). Contrarily, the coherence values between the MS and DA, as well as the MS and SM muscle pairs, were relatively low (median coherence=0.848 and 0.957, respectively). Phase analysis revealed minimal temporal differences between the MS and TA muscle pair and the MS and SM muscle pair, whereas substantial phase shifts were observed between the MS and DA muscle pair. Conclusions: During chewing in healthy adults, the TA muscle works synergistically whereas the DA muscle antagonistically with the MS muscle, and the SM muscle supports the activity of the MS muscle. The observed synchrony and coordination provide insights into the intricate interplay among these muscles during oral motor tasks.

Fluctuations of Pelagic Fish Populations in Relation to the Climate Shifts in the Far-East Regions

  • Gong, Yeong;Jeong, Hee-Dong;Suh, Young-Sang;Park, Jong-Hwa;Seong, Ki-Tack;Kim, Sang-Woo;Choi, Kwang-Ho;Han, In-Seong
    • Journal of Ecology and Environment
    • /
    • v.30 no.1
    • /
    • pp.23-38
    • /
    • 2007
  • Based on a time series of ocean climate indices and catch records for seven pelagic fish species in the Tsushima Warm Current (TWC) and Kuroshio-Oyashio Current (KOC) regions from 1910 to 2004, we detected regional synchrony in the long-term fluctuations of the fish populations and identified alternation patterns of dominant species related to climate shifts. The annual catches of Pacific herring, Japanese sardines, Japanese anchovies, jack mackerel, chub mackerel, Pacific saury and common squid in the TWC region fluctuated in phase with those in the KOC region, which suggests that they were controlled by the same basin-wide climate forcing. After the collapse of the herring fishery, the alternation sequence was: sardines (1930s), Pacific saury, jack mackerel, common squid and anchovies ($1950s{\sim}1960s$), herring ($late\;1960s{\sim}early\;1970s$), chub mackerel (1970s) and then sardines (1980s). As sardine biomass decreased in the late stages of the cool regime, catch of the other four species increased immediately during the warm period of the 1990s. Regional differences in the amplitude of long-term catch fluctuations for the seven pelagic fishes could be explained by regional differences in availability, fishing techniques and activity.