Browse > Article
http://dx.doi.org/10.4490/algae.2018.33.5.8

Silicon transporter genes of Fragilariopsis cylindrus (Bacillariophyceae) are differentially expressed during the progression of cell cycle synchronized by Si or light  

Oh, Han Sang (Department of Systems Biotechnology, KU Institute of Technology, Konkuk University)
Lee, Sung-eun (Department of Systems Biotechnology, KU Institute of Technology, Konkuk University)
Han, Chae-seong (Department of Systems Biotechnology, KU Institute of Technology, Konkuk University)
Kim, Joon (Department of Life Science, Research Institute for Natural Sciences, Hanyang University)
Nam, Onyou (Department of Life Science, Research Institute for Natural Sciences, Hanyang University)
Seo, Seungbeom (Department of Life Science, Research Institute for Natural Sciences, Hanyang University)
Chang, Kwang Suk (Department of Life Science, Research Institute for Natural Sciences, Hanyang University)
Jin, EonSeon (Department of Life Science, Research Institute for Natural Sciences, Hanyang University)
Hwang, Yong-sic (Department of Systems Biotechnology, KU Institute of Technology, Konkuk University)
Publication Information
ALGAE / v.33, no.2, 2018 , pp. 191-203 More about this Journal
Abstract
Fragilariopsis cylindrus is one of the most successful psychrophiles in the Southern Ocean. To investigate the molecular mechanism of biomineralization in this species, we attempted to synchronize F. cylindrus growth, since new cell wall formation is tightly coupled to the cell division process. Nutrient limitation analysis showed that F. cylindrus cultures rapidly stopped growing when deprived of silicate or light, while growth continued to a certain extent in the absence of nitrate. Flow cytometry analysis indicated that deprivation of either silicate or light could effectively arrest the cell cycle of this diatom species at the G1 phase, suggesting that synchrony can be established using either factor. Fluorescence labeling of new cell walls was faintly detectable as early as approximately 6 h after silicon repletion or light irradiation, and labeling was markedly intensified by 18 h. It is revealed that the synthesis of girdle bands begins before valve synthesis in this species, with active valve synthesis occurring during the G2 / M phase. Expression profiling revealed that selective member(s) of the F. cylindrus SIT genes (FcSIT) respond to silicate and light, with a different set of genes being responsive to each factor. The Si / light double depletion experiments demonstrated that expression of one FcSIT gene is possibly correlated to transition to G2 / M phase of the cell cycle, when the valve is actively formed.
Keywords
biomineralization; cell wall; psychrophilic diatom; silicon transporter gene; synchrony;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bender, S. J., Durkin, C. A., Berthiaume, C. T., Morales, R. L. & Armbrust, E. V. 2014. Transcriptional responses of three model diatoms to nitrate limitation of growth. Front Mar. Sci. 1:1-15.
2 Brembu, T., Chauton, M. S., Winge, P., Bones, A. M. & Vadstein, O. 2017. Dynamic responses to silicon in Thalasiossira pseudonana: identification, characterisation and classification of signature genes and their corresponding protein motifs. Sci. Rep. 7:4865.   DOI
3 Brzezinski, M. A. & Conley, D. J. 1994. Silicon deposition during the cell cycle of Thalassiosira weissflogii (Bacillariophyceae) determined using dual rhodamine 123 and propidium iodide staining. J. Phycol. 30:45-55.   DOI
4 Brzezinski, M. A., Olson, R. J. & Chisholm, S. W. 1990. Silicon availability and cell-cycle progression in marine diatoms. Mar. Ecol. Prog. Ser. 67:83-96.   DOI
5 Descles, J., Vartanian, M., El Harrak, A., Quinet, M., Bremond, N., Sapriel, G., Bibette, J. & Lopez, P. J. 2008. New tools for labeling silica in living diatoms. New Phytol. 177:822-829.   DOI
6 Durkin, C. A., Koester, J. A., Bender, S. J. & Armbrust, E. V. 2016. The evolution of silicon transporters in diatoms. J. Phycol. 52:716-731.   DOI
7 Falkowski, P. G., Barber, R. T. & Smetacek, V. 1998. Biogeochemical controls and feedbacks on ocean primary production. Science 281:200-206.   DOI
8 Frigeri, L. G., Radabaugh, T. R., Haynes, P. A. & Hildebrand, M. 2006. Identification of proteins from a cell wall fraction of the diatom Thalassiosira pseudonana: insights into silica structure formation. Mol. Cell Proteomics 5:182-193.   DOI
9 Gillard, J., Devos, V., Huysman, M. J. J., De Veylder, L., D'Hondt, S., Martens, C., Vanormelingen, P., Vannerum, K., Sabbe, K., Chepurnov, V. A., Inze, D., Vuylsteke, M. & Vyverman, W. 2008. Physiological and transcriptomic evidence for a close coupling between chloroplast ontogeny and cell cycle progression in the pennate diatom Seminavis robusta. Plant Physiol. 148:1394-1411.   DOI
10 Guillard, R. R. L. & Ryther, J. H. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8:229-239.   DOI
11 Hildebrand, M. 2008. Diatoms, biomineralization processes, and genomics. Chem. Rev. 108:4855-4874.   DOI
12 Hazelaar, S., Van Der Strate, H. J., Gieskes, W. W. C. & Vrieling, E. G. 2005. Monitoring rapid valve formation in the pennate diatom Navisula salinarum (Bacillariophyceae). J. Phycol. 41:354-358.   DOI
13 Darley, W. M. & Volcani, B. E. 1969. Role of silicon in diatom metabolism: a silicon requirement for deoxyribonucleic acid synthesis in the diatom Cylindrotheca fusiformis Reimann and Lewin. Exp. Cell Res. 58:334-342.   DOI
14 Hildebrand, M. 2000. Silicic acid transport and its control during cell wall silicification in diatoms. In Bauerlein, E. (Ed.) Biomineralization: From Biology to Biotechnology and Medical Application. Wiley-VCH, Weinheim, pp. 171-188.
15 Hildebrand, M., Dahlin, K. & Volcani, B. E. 1998. Characterization of a silicon transporter gene family in Cylindrotheca fusiformis: sequences, expression analysis, and identification of homologs in other diatoms. Mol. Gen. Genet. 260:480-486.   DOI
16 Hildebrand, M., Frigeri, L. G. & Davis, A. K. 2007. Synchronized growth of Thalassiosira pseudonana (Bacillariophyceae) provides novel insights into cell-wall synthesis processes in relation to the cell cycle. J. Phycol. 43:730-740.   DOI
17 Huisman, J., Sharples, J., Stroom, J. M., Visser, P. M., Kardinaal, W. E. A., Verspagen, J. M. H. & Sommeijer, B. 2004. Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology 85:2960-2970.   DOI
18 Huysman, M. J. J., Martens, C., Vandepoele, K., Guillard, J., Rayko, E., Heijde, M., Bowler, C., Inze, D., Van de Peer, Y., De Veylder, L. & Vyverman, W. 2010. Genome-wide analysis of the diatom cell cycle unveils a novel type of cyclins involved in environmental signaling. Genome Biol. 11:R17.   DOI
19 Lavaud, J., Strzepek, R. F. & Kroth, P. G. 2007. Photoprotection capacity differs among diatoms: possible consequences on the spatial distribution of diatoms related to fluctuations in the underwater light climate. Limnol. Oceanogr. 52:1188-1194.   DOI
20 Lavaud, J., Rousseau, B. & Etienne, A. -L. 2004. General features of photoprotection by energy dissipation in planktonic diatoms (Bacillariophyceae). J. Phycol. 40:130-137.   DOI
21 Martin-Jezequel, V., Hildebrand, M. & Brzezinski, M. A. 2000. Silicon metabolism in diatoms: implications for growth. J. Phycol. 36:821-840.   DOI
22 Mock, T., Otillar, R. P., Strauss, J., McMullan, M., Paajanen, P., Schmutz, J., Salamov, A., Sanges, R., Toseland, A., Ward, B. J., Allen, A. E., Dupont, C. L., Frickenhaus, S., Maumus, F., Veluchamy, A., Wu, T., Barry, K. W., Falciatore, A., Ferrante, M. I., Fortunato, A. E., Glöckner, G., Gruber, A., Hipkin, R., Janech, M. G., Kroth, P. G., Leese, F., Lindquist, E. A., Lyon, B. R., Martin, J., Mayer, C., Parker, M., Quesneville, H., Raymond, J. A., Uhlig, C., Valas, R. E., Valentin, K. U., Worden, A. Z., Armbrust, E. V., Clark, M. D., Bowler, C., Green, B. R., Moulton, V., van Oosterhout, C. & Grigoriev, I. V. 2017. Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus. Nature 541:536-540.   DOI
23 Olson, R. J., Vaulot, D. & Chisholm, S. W. 1986. Effects of environmental stresses on the cell cycle of two marine phytoplankton species. Plant Physiol. 80:918-925.   DOI
24 Park, M., Yim, H. K., Park, H. G., Lim, J., Kim, S. H. & Hwang, Y. S. 2010. Interference with oxidative phosphorylation enhances anoxic expression of rice alpha-amylase genes through abolishing sugar regulation. J. Exp. Bot. 61:3235-3244.   DOI
25 Schellenberger, C. B., Jungandreas, A., Jakob, T., Weisheit, W., Mittag, M. & Wilhelm, C. 2013. Blue light is essential for high light acclimation and photoprotection in the diatom Phaeodactylum tricornutum. J. Exp. Bot. 64:483-493.   DOI
26 Sackett, O., Petrou, K., Reedy, B., De Grazia, A., Hill, R., Doblin, M., Beardall, J., Ralph, P. & Heraud, P. 2013. Phenotypic plasticity of southern ocean diatoms: key to success in the sea ice habitat? PLoS ONE 8:e81185.   DOI
27 Sapriel, G., Quinet, M., Heijde, M., Jourdren, L., Tanty, V., Luo, G., Le Crom, S. & Lopez, P. J. 2009. Genome-wide transcriptome analyses of silicon metabolism in Phaeodactylum tricornutum reveal the multilevel regulation of silicic acid transporters. PLoS ONE 4:e7458.   DOI
28 Li, C. ‐W., Chu, S. & Lee, M. 1989. Characterizing the silica deposition vesicle of diatoms. Protoplasma 151:158-163.   DOI
29 Shimizu, K., Del Amo, Y., Brzezinski, M. A., Stucky, G. D. & Morse, D. E. 2001. A novel fluorescent silica tracer for biological silicification studies. Chem. Biol. 8:1051-1060.   DOI
30 Shrestha, R. P. & Hildebrand, M. 2015. Evidence for a regulatory role of diatom silicon transporters in cellular silicon responses. Eukaryot. Cell 14:29-40.   DOI
31 Valenzuela, J., Mazurie, A., Carlson, R. P., Gerlach, R., Cooksey, K. E., Peyton, B. M. & Fields, M. W. 2012. Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum. Biotechnol. Biofuels 5:40.   DOI
32 Thamatrakoln, K. & Hildebrand, M. 2007. Analysis of Thalassiosira pseudonana silicon transporters indicates distinct regulatory levels and transport activity through the cell cycle. Eukaryot. Cell 6:271-279.   DOI
33 Thamatrakoln, K. & Hildebrand, M. 2008. Silicon uptake in diatoms revisited: a model for saturable and nonsaturable uptake kinetics and the role of silicon transporters. Plant Physiol. 146:1397-1407.   DOI
34 Treguer, P., Nelson, D. M., Van Bennekom, A. J., Demaster, D. J., Leynaert, A. & Queguiner, B. 1995. The silica balance in the world ocean: a reestimate. Science 268:375-379.   DOI
35 Vaulot, D., Olson, R. J. & Chisholm, S. W. 1986. Light and dark control of the cell cycle in two marine phytoplankton species. Exp. Cell Res. 167:38-52.   DOI
36 Vaulot, D., Olson, R. J., Merkel, S. & Chisholm, S. W. 1987. Cell-cycle response to nutrient starvation in two phytoplankton species, Thalassiosira weissflogii and Hymenomonas carterae. Mar. Biol. 95:625-630.   DOI
37 Yang, Z. K., Niu, Y. F., Ma, Y. H., Xue, J., Zhang, M. H., Yang, W. D., Liu, J. S., Lu, S. H., Guan, Y. & Li, H. Y. 2013. Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation. Biotechnol. Biofuels 6:67.   DOI
38 Vrieling, E. G., Sun, Q., Beelen, T. P., Hazelaar, S., Gieskes, W. W., Van Santen, R. A. & Sommerdijk, N. A. 2005. Controlled silica synthesis inspired by diatom silicon biomineralization. J. Nanosci. Nanotechnol. 5:68-78.   DOI