• Title/Summary/Keyword: Phase shift full-bridge converter

Search Result 130, Processing Time 0.029 seconds

스너버 커패시터를 이용한 CCPS용 FB-PS-ZVS DC-DC 컨버터의 IGBT Turn-off 손실에 관한 연구

  • Lee, Yong-Deok;Kim, Sang-Hyeon;Kim, Tae-Hyeong;In, Dong-Seok;Kim, Ju-Hun
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.572-573
    • /
    • 2010
  • 본 논문은 30kW급 CCPS(Capacitor Charging Power Supply)용 FB(Full Bridge)-PS(Phase Shift)- Zero Voltage Switching(ZVS) DC/DC Converter의 스위칭 손실저감을 위한 스너버 커패시터의 설계에 대해 논하였다. FB-PS-ZVS DC-DC 컨버터의 하드스위칭 손실과 스너버 커패시터에 의한 스위칭 손실 저감 효과를 비교했다. 첨두 전류를 이용하여 스너버 커패시터를 설계하였으며, 부하 실험을 통해 설계의 타당성을 실험적으로 검증했다.

  • PDF

Impact analysis in accordance with the voltage control gain of phase shift full-bridge converter (위상천이 풀브리지 컨버터의 전압제어기 게인값 선정에 따른 영향 분석)

  • Bae, Sungjin;Nguyen, Tuan Anh;Choi, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.139-140
    • /
    • 2016
  • 본 논문은 위상천이 풀브리지 컨버터의 전압 제어기 설계에 있어 게인값의 선정에 따른 위상 이득, 게인 이득을 통해 안정도를 판별하고 게인값에 따른 시스템의 응답특성을 고려하여 최적값을 설계하는데 목표를 두고 있다. MATLAB의 Bode plot을 통해 안정도 및 응답특성을 확인하였고 PSIM 시뮬레이션을 통해 제어가 잘 되는지 확인하였다.

  • PDF

Modeling, Dynamic Analysis and Control Design of Full-Bridge LLC Resonant Converters with Sliding-Mode and PI Control Scheme

  • Zheng, Kai;Zhang, Guodong;Zhou, Dongfang;Li, Jianbing;Yin, Shaofeng
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.766-777
    • /
    • 2018
  • In this paper, a sliding mode and proportional plus integral (SM-PI) control combined with self-sustained phase shift modulation (SSPSM) for LLC resonant converters is presented. The proposed control scheme improves the transient response while preserving good steady-state performance. An averaged large signal model of an LLC converter with the ZVS modulation technique is developed for the SM control design. The sliding surface is obtained based on the input-output linearization concept. A system identification method is adopted to obtain the transform function of the LLC resonant converter, which is used to design the PI control. In order to reduce the inherent chattering problem in the steady state, the combined SM-PI control strategy is derived with fuzzy control, where the SM control is responsive during the transient state while the PI control prevails in the steady state. The combination of SSPSM and the SM-PI control provides ZVS operation, robustness and a fast transient response against step load variations. Simulation and experimental results validate the theoretical analysis and the attractive features of the proposed scheme.

A Study on High Frequency Resonant Type X-ray Generator (고주파 공진형 방식 X-선 발생장치에 관한 연구)

  • Yoo, Dong-Wook;Ha, Sung-Woon;Baek, Joo-Won;Kim, Jong-Soo;Kim, Hack-Seong;Won, Chung-Yuen
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.209-211
    • /
    • 1995
  • This paper is concerned with High Frequency, High Voltage Generator for X-ray using zero-voltage soft-switching PWM DC-DC high-power converter by Resonant method, which makes the most of the parastic LC parameters of high-voltage transformer link, for diagnostic X-ray power generator. The converter circuit basically utilizes phase-shift pulse width modulated series Resonant full-bridge PWM DC-DC high-power converter operating at a constant frequency;25kHz. The converter output regulation is digitally controlled using DSP (Digital Signal Processor) for obtaining a fast rising time and adjust output voltage within a wide load range.

  • PDF

Soft-Switched PWM DC-DC High-Power Converter with Quasi Resonant-Poles and Parasitic Reactive Resonant Components of High-Voltage Transformer (부분 공진형 소프트 스위칭 PWM DC-DC 고전압 컨버터)

  • 김용주;신대철
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.384-394
    • /
    • 1999
  • This paper deals with a fixed frequency full-bridge inverter type DC-DC high-power converter with high frequency high voltage(HFHV) transformer-coupled stage, which operates under quasi-resonant ZVS transition priciple in spite of a wide PWM-based voltage regulation processing and largely-changed load conditions. This multi-resonant(MR) converter topology is composed of a series capacitor-connected parallel resonant tank which makes the most of parasitic circuit reactive components of HFHV transformer and two additional quasi-resonant pole circuits incorporated into the bridge legs. The soft-switching operation and practical efficacy of this new converter circuit using the latest IGBTs are actually ascertained through 50kV trially-produced converter system operating using 20kHz/30kHz high voltage(HV) transformers which is applied for driving the diagnostic HV X-ray tube load in medical equipments. It is proved from a practical point of view that the switching losses of IGBTs and their electrical dynamic stresses relating to EMI noise can be considerably reduced under a high frequency(HF) switching-based phase-shift PWM control process for a load setting requirements.

  • PDF

Design Considerations of Asymmetric Half-Bridge for Capacitive Wireless Power Transmission

  • Truong, Chanh Tin;Choi, Sung-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.139-141
    • /
    • 2019
  • Capacitive power transfer has an advantage in the simplicity of the energy link structure. So, the conventional phase -shift full bridge sometime is not always the best choice because of its complexity and high cost. On the other hand, the link capacitance is usually very low and requires high-frequency operation, but, the series resonant converter loses zero-voltage switching feature in the light load condition, which makes the switching loss high especially in CPT system. The paper proposes a new low-cost topology based on asymmetric half-bridge to achieve simplicity as well as wide zero voltage switching range. The design procedure is presented, and circuit operations are analyzed and verified by simulation.

  • PDF

A Novel Hybrid Converter with Wide Range of Soft-Switching and No Circulating Current for On-Board Chargers of Electric Vehicles

  • Tran, Van-Long;Tran, Dai-Duong;Doan, Van-Tuan;Kim, Ki-Young;Choi, Woojin
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.143-151
    • /
    • 2018
  • In this paper, a novel hybrid configuration combining a phase-shift full-bridge (PSFB) and a half-bridge resonant LLC converter is proposed for the On-Board Charger of Electric Vehicles (EVs). In the proposed converter, the PSFB converter shares the lagging-leg switches with half-bridge resonant converter to achieve the wide ZVS range for the switches and to improve the efficiency. The output voltage is modulated by the effective-duty-cycle of the PSFB converter. The proposed converter employs an active reset circuit composed of an active switch and a diode for the transformer which makes it possible to achieve zero circulating current and the soft switching characteristic of the primary switches and rectifier diodes regardless of the load, thereby making the converter highly efficient and eliminating the reverse recovery problem of the diodes. In addition an optimal power sharing strategy is proposed to meet the specification of the charger and to optimize the efficiency of the converter. The operation principle the proposed converter and design considerations for high efficiency are presented. A 6.6 kW prototype converter is fabricated and tested to evaluate its performance at different conditions. The peak efficiency achieved with the proposed converter is 97.7%.

The considerations of Low Voltage DC-DC Converter for Electric Vehicle (소형 전기 자동차용 LDC 회로 고찰)

  • Kim, Sung-Wan;Kim, Chang-Sun;Kim, Young-Su;Jung, Sang-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1199-1200
    • /
    • 2011
  • The low voltage DC-DC Converter(LDC) is used for various electronic devices of electric vehicle. Depending on the growth of the car, the capacity of power conversion circuits must be increased. They have to provide the high efficiency and the high load capacity. The phase shift controlled full-bridge converter can be designed for LDC. The operating characteristics are considered through by simulation.

  • PDF

Comparative Performance Evaluation of Si MOSFET and GaN FET Power System (Si MOSFET과 GaN FET Power System 성능 비교 평가)

  • Ahn, Jung-Hoon;Lee, Byoung-Kuk;Kim, Jong-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.283-289
    • /
    • 2014
  • This paper carries out a series of analysis of power system using Gallium Nitride (GaN) FET which has wide band gap (WBG) characteristics comparing to conventional Si MOSFET-used power system. At first, for comparison of each semiconductor device, the switching-transient parameter is quantitatively extracted from released information of GaN FET. And GaN FET model which reflect this dynamic property is configured. By using this model, the performance of GaN FET is analyzed comparing to Si MOSFET. Also, in order to enable a representative assessment on the power system level, Si MOSFET and GaN FET are applied to the most common structure of power system, full-bridge, and each power systems are compared based on various criteria, such as performance, efficiency and power density. The entire process is verified with the aid of mathematical analysis and simulation.

Reduction of DC-Link Voltage Ripple of Three-phase AC/DC Converter for Uninterruptible Power Supply by Applying Fuel Cell (연료전지를 적용한 무정전전원장치용 3상 AC/DC 컨버터의 DC-Link 전압 리플 저감)

  • Park, Jin-Ho;Kim, Kyung-Min;Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.43-51
    • /
    • 2010
  • Conventional UPS(Uninterruptible Power Supply) using batteries for assisting the source is limited by the large volume and the life-time of battery. Moreover, voltage variation caused by the sudden load variation brings the problems on UPS system output. In this paper, the battery using fuel cell which is environment-friendly alternative energy is connected on AC/DC converter for UPS to compensate the sudden load variation energy and make the stable power.