• Title/Summary/Keyword: Phase renormalization

Search Result 6, Processing Time 0.024 seconds

Decoupling of Background and Resonance Scatterings in Multichannel Quantum Defect Theory and Extraction of Dynamic Parameters from Lu-Fano Plot

  • Lee, Chun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.891-896
    • /
    • 2009
  • Giusti-Suzor and Fano introduced translations of the scales of Lu-Fano plots by phase renormalization in order to decouple the intra- and inter-channel couplings in multichannel quantum defect theory (MQDT). Their theory was further developed by others to deal with systems involving a larger number of channels. In different directions, MQDT was reformulated into forms with a one-to-one correspondence to those in Fano's configuration mixing theory of resonance for photofragmentation processes involving one closed and many open channels. In this study, the theory was further developed to fully reveal the coupling nature, decoupling of the background and resonance scattering in physical scattering matrices as well as to further extract the dynamic parameters undiscovered by Fano and his colleagues. This theory was applied to the photoabsorption spectrum of $H_2$ observed by Herzberg's group.

Ubiquitous Crisis and Renormalization Approach for e-commerce : Critical Phenomena and Emergence of Phase Transition ; Logarithmic convergence

  • Ito, Ken;Kazuomi;Fukuta, Takanari
    • Proceedings of the CALSEC Conference
    • /
    • 2004.02a
    • /
    • pp.89-97
    • /
    • 2004
  • 1. Introduction; Fundamental Difference between conventional old commerce and e-commerce? 2. "Quantity changes into Quality"; Phase transition and Critical phenomena Logarithmic Convergence and Emergence of Quality 3. Networked Small World; Indications from Genomics; Power-Law Ordered Plain Structure of Super-Complex System ⇔ The Structure of e-Biz. 4. Uniquitous Crisis to Ubiquitous Critical Points for the Emergence of Qualified Business with e-strucrure

  • PDF

Geometrical Construction of the S Matrix and Multichannel Quantum Defect Theory for the two Open and One Closed Channel System

  • Lee, Chun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.7
    • /
    • pp.971-984
    • /
    • 2002
  • The multichannel quantum defect theory (MQDT) is reformulated into the form of the configuration mixing (CM) method using the geometrical construction of the S matrix developed for the system involving two open and one closed channels. The reformulation is done by the phase renormalization method of Giusti-Suzor and Fano. The rather unconventional short-range reactance matrix K whose diagonal elements are not zero is obtained though the Lu-Fano plot becomes symmetrical. The reformulation of MQDT yields the partial cross section formulas analogous to Fano's resonance formula, which has not easily been available in other's work.

The Lecomte-Ueda Transformation and Resonance Structure in the Multichannel Quantum Defect Theory for the Two Open and One Closed Channel System

  • Lee, Chun-Woo;Kim, Ji-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.11
    • /
    • pp.1560-1567
    • /
    • 2002
  • The transformation devised by Lecomte and Ueda for the study of resonance structures in the multichannel quantum defect theory (MQDT) is used to analyze partial photofragmentation cross section formulas in MQDT analogous to Fano's resonance formula obtained in the previous work for the system involving two open and one closed channels. Detailed comparison of the MQDT results with the configuration mixing (CM) ones is made. Resonance structures and their geometrical relations in the MQDT formulation are revealed and classified by combining Lecomte and Ueda's theory with the geometrical method devised to study the coupling between background and resonance scatterings.

Direct observation of delocalized exciton state in Ta2 NiSe5: direct evidence of the excitonic insulator state

  • Lee, Jin-Won;Gang, Chang-Jong;Eom, Man-Jin;Kim, Jun-Seong;Min, Byeong-Il;Yeom, Han-Ung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.125.1-125.1
    • /
    • 2016
  • The excitonic insulator (EI), which is one of fundamental insulators, was theoretically proposed in 1967 but its material realization has not been established well. Only a few materials were proposed as EIs but their experimental evidences were indirect such as the renormalization of band dispersions or an anomaly in electrical resistivity. We conducted scanning tunneling microscopy / spectroscopy measurements and found out that $Ta_2$ $NiSe_5$, which was the most recently proposed as an EI, had a metal-insulator phase transition with the energy gap of 700 meV at 78 K. Moreover, the spatially delocalized excitonic energy level was observed within the energy gap, which could be the direct evidence of the EI ground state. Our theoretical model calculation with the order parameter of 150 meV reproduces the spectral function and the excitonic energy gap very well. In addition, experimental data shows that the band character is inverted at the valence and conduction band edges by the exciton formation, indicating that the mechanism of exciton condensation is similar to the Bardeen-Cooper-Schrieffer (BCS) mechanism of cooper pairs in superconductors.

  • PDF

Multichannel Quantum Defect Theory Analysis of Overlapping Resonance Structures in Lu-Fano Plots of Rare Gas Spectra

  • Lee, Chun-Woo;Kong, Ja-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1783-1792
    • /
    • 2009
  • Although overlapping resonances have been studied extensively in conventional resonance theories, there have not been many studies on them in multichannel quantum defect theories (MQDT). In MQDT, overlapping resonances occur between the channels instead of states, which pose far greater difficulty. Their systematic treatment was obtained for cases involving degenerate closed channels by applying our previous theory, which decouples background scattering from the resonance scattering in the MQDT formulation. The use of mathematical theory on con-diagonalization and con-similarity was essential for handling the non-Hermitian symmetric complex matrix. Overlapping resonances in rare gas spectra of Ar, Kr and Xe were analyzed using this theory and the results were compared with the ones of the previous alternative parameterizations of MQDT which make the open-open part $K^{oo}$ and closed-closed part $K^{cc}$ of reactance submatrices zero. The comparison revealed that separation of background and resonance scatterings achieved in our formulation in a systematic way was not achieved in the representation of $K^{oo}\;=\;0\;and\;K^{cc}$ = 0 when overlapping resonances are present.