• Title/Summary/Keyword: Phase error

Search Result 2,011, Processing Time 0.034 seconds

A Novel Single Phase Synchronous Reference Frame Phase-Locked Loop with a Constant Zero Orthogonal Component

  • Li, Ming;Wang, Yue;Fang, Xiong;Gao, Yuan;Wang, Zhaoan
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1334-1344
    • /
    • 2014
  • A novel single phase Phase-Locked Loop (PLL) is proposed in this paper to accurately and rapidly estimate the instantaneous phase angle of a grid. A conjugate rotating vector pair is proposed and defined to synthesize the single phase signal in the stationary reference frame. With this concept, the proposed PLL innovatively sets one phase input of the PARK transformation to a constant zero. By means of a proper cancellation, a zero steady state phase angle estimation error can be achieved, even under magnitude and frequency variations. The proposed PLL structure is presented together with guidelines for parameters adjustment. The performance of the proposed PLL is verified by comprehensive experiments. Satisfactory phase angle estimation can be achieved within one input signal cycle, and the estimation error can be totally eliminated in four input cycles for the most severe conditions.

A Numerically Controlled Oscillator with a Fine Phase Tuner and a Rounding Processor

  • Lim, In-Gi;Kim, Whan-Woo
    • ETRI Journal
    • /
    • v.26 no.6
    • /
    • pp.657-660
    • /
    • 2004
  • We propose a fine phase tuner and a rounding processor for a numerically controlled oscillator (NCO), yielding a reduced phase error in generating a digital sine waveform. By using the fine phase tuner presented in this paper, when the ratio of the desired sine wave frequency to the clock frequency is expressed as a fraction, an accurate adjustment in representing the fractional value can be achieved with simple hardware. In addition, the proposed rounding processor reduces the effects of phase truncation on the output spectrum. Logic simulation results of the NCO using these techniques show that the noise spectrum and mean square error (MSE) for eight output bits of a 3.125 MHz sine waveform are reduced by 8.68 dB and 5.5 dB, respectively, compared to those of the truncation method, and 2.38 dB and 0.83 dB, respectively, compared to those of Paul's scheme.

  • PDF

Design and Implementation of the Wideband 5-bit Phase Shifter (광대역 5-bit 위상변위기의 설계 및 제작)

  • 전병휘;정영준;이광일;임인성;오승엽
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.613-616
    • /
    • 2003
  • This paper describes the design and implementation of wideband 360$^{\circ}$ phase shifter by using I/Q vector method. One of four quadrants was selected by a switching operation and the desired phase value was obtained by varying attenuation level of attenuator located in I/Q path. The minimum phase RMS error of 3.6$^{\circ}$ and the maximum phase RMS error of 25.2$^{\circ}$ were measured over 6~180Hz frequency range. Those characteristics are good enough for the requirement of ECM radar equipment. The phase values can be adjusted by control module.

  • PDF

A Low Jitter and Fast Locking Phase-Lock Loop with Adaptive Bandwidth Controller

  • Song Youn-Gui;Choi Young-Shig
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.1
    • /
    • pp.18-22
    • /
    • 2005
  • This paper presents the analog adaptive phase-locked loop (PLL) architecture with a new adaptive bandwidth controller to reduce locking time and minimize jitter in PLL output for wireless communication. It adaptively controls the loop bandwidth according to the locking status. When the phase error is large, the PLL increases the loop bandwidth and reduces locking time. When the phase error is small, the PLL decreases the loop bandwidth and minimizes output jitters. The adaptive bandwidth control is implemented by controlling charge pump current depending on the locking status. A 1.28-GHz CMOS phase-locked loop with adaptive bandwidth control is designed with 0.35 $mu$m CMOS technology. It is simulated by HSPICE and achieves the primary reference sidebands at the output of the VCO are approximately -80dBc.

Minimization of Torque-Ripple in Switched Reluctance Motors Over Wide Speed Range

  • Dowlatshahi, Milad;Saghaiannejad, Seyed Morteza;Ahn, Jin-Woo;Moallem, Mehdi
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.478-488
    • /
    • 2014
  • Torque pulsation mechanism and highly nonlinear magnetic characterization of switched reluctance motors(SRM) lead to unfavorable torque ripple and limit the variety of applications in industry. In this paper, a modification method proposed for torque ripple minimization of SRM based on conventional torque sharing functions(TSF) to improve maximum speed of torque ripple-free operation considering converter limitations. Due to increasing phase inductance in outgoing phase during the commutation region, reference current tracking can be deteriorated especially when the speed increased. Moreover, phase torque production in incoming phase may not be reached to the reference value near the turn-on angle in which the incremental inductance would be dramatically decreased. Torque error for outgoing phase can cause increasing the resultant motor torque while it would be negative for incoming phase and yields reducing the motor torque. In this paper, a modification method is proposed in which phase torque tracking error for each phase under the commutation added to the other phase so that the resultant torque remained in constant level. This yields to extend constant torque region and reduce peak phase current when the speed increased. Simulation and experimental results for four phase 4 KW, 8/6 SRM validate the effectiveness of the proposed scheme.

Adaptive Phase-Locked Loop for Process Control System

  • Park, Jin-Bae;Shohei, Niwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.108.2-108
    • /
    • 2001
  • This paper presents the application of adaptive phase-locked loop (adaptive PLL) technique to control the process variable of the process control system. The adaptive algorithm is related to the error. When the error of the system is changed, the adaptive gain will be directly changed according to the error. If the value of the adaptive gain is large, the value of the error will be large. In this experiment, the reference input is 50% step input. The experimental result in controlling the first order lag process by the adaptive PLL shows that the response of the controlled system has no overshoot, short rise time, and zero steady-state error. The experimental result also shows that when the output disturbance enters to the process control system, the adaptive PLL can maintain the stability of the system and the effect of the output disturbance can also be fast rejected. The adaptive PLL has better performance ...

  • PDF

An Eeffective Mesh Generation Algorithm Using Singular Shape Functions

  • Yoo, Hyeong Seon;Jang, Jun Hwan;Pyun, Soo Bum
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.268-271
    • /
    • 2001
  • In this paper, we propose a simplified pollution adaptive mesh generation algorithm using singular elements. The algorithm based on the element pollution error indicator concentrate on boundary nodes. The automatic mesh generation method is followed by either a node-relocation or a node-insertion method. The boundary node relocation phase is introduced to reduce pollution error estimates without increasing the boundary nodes. The node insertion phase greatly improves the error and the factor with the cost of increasing the node numbers. It is shown that the suggested r-h version algorithm combined with singular elements converges more quickly than the conventional one.

  • PDF

Reducing PAPR of OFDM Signals Using Modified Partial Transmit Sequences Technique Based on Erasure Decoding (소실 복호 기반의 수정된 PTS 기법을 이용한 OFDM 신호의 PAPR 감소)

  • Kong, Min-Han;Song, Moon-Kyou
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8C
    • /
    • pp.775-781
    • /
    • 2007
  • In this paper, a modified PTS(Partial Transmit Sequences) technique that uses erasure decoding of RS (Reed-Solomon) codes is presented. At the transmitter, some check symbols in a RS codeword partitioned into subblocks are phase-rotated by phase factors. The receiver decodes received codewords by regarding the phase-rotated check symbols as erasures. Hence, this technique does not need to transmit the side information about the phase factors chosen at the transmitter. The complexity of the receiver is also reduced since the estimation process for the phase factors is not required in the receiver. There is no performance degradation due to the transmission error of the side information or the estimation error of the phase factors. To evaluate the performance of the proposed PTS technique, the CCDF(Complementary Cumulative Distribution Function) of PAPR and the BER(Bit Error Rate) are compared with those of the conventional PTS techniques.

A Study on the Accuracy Analysis for Air-to-Ground Weapon Delivery (공대지 무장투하정확도 해석에 대한 연구)

  • Jo, Han-Sang;Song, Chae-Il;Lee, Sang-Chul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.8
    • /
    • pp.741-746
    • /
    • 2007
  • In this paper, we propose an accuracy analysis method for air-to-ground weapon delivery. The lethality, which is one of the most important factor to evaluate combat effectiveness of a fighter, depends on the capability to improve the accuracy of the conventional weapon delivery. We present error elements which affect the error analysis for air-to-ground weapon delivery from the initial design phase to the final validation phase. And we introduce an accuracy analysis method to reflect the error elements and to evaluate them quantitatively. We assume zero bias-error and consider random error for the weapon delivery accuracy analysis.

Prediction of Performance Loss Due to Phase Noise in Digital Satellite Communication System (디지털 위성통신시스템에서 위상 잡음으로 인한 성능 손실 예측)

  • 김영완;박동철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.7
    • /
    • pp.679-686
    • /
    • 2002
  • Based on the alternating series expansion of error probability function due to phase noise in PSK systems, the performance evaluations for Tikhonov and Gaussian probability density functions were performed in this paper. The range of the signal-to-noise ratio of recovered carrier signal which provides the same dependency between the error performances by Tikhonov function and Gaussian function was analyzed via loss evaluation due to phase noise. The phase noise with 1/f$^2$ characteristic was generated based on the relationship of the phase noise spectral density and the modulation index for frequency modulation signal. Using the generated phase noise as the input signal for digital satellite communication receiver, the performance losses due to the phase noise were measured and evaluated with the analyzed performance characteristics.