• Title/Summary/Keyword: Phase cycling

Search Result 159, Processing Time 0.026 seconds

Crystal Structures, Electrical Conductivities and Electrochemical Properties of LiCo1-XMgxO2(x=0.03) for Secondary Lithium Ion Batteries (리튬 2차 전지용 LiCo1-XMgxO2(x=0.03)의 결정구조, 전기전도도 및 전기화학적 특성)

  • Kim, Ho-Jin;Chung, Uoo-Chang;Jeong, Yeon-Uk;Lee, Joon-Hyung;Kim, Jeong-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.9 s.280
    • /
    • pp.602-606
    • /
    • 2005
  • [ $LiCoO_{2}$ ] is the most common cathode electrode materials in Lithium-ion batteries. $LiCo_{0.97}Mg_{0.03}O_2$ was synthesized by the solid-state reaction method. We investigated crystal structures, electrical conductivities and electrochemical properties. The crystal structure of $LiCo_{0.97}Mg_{0.03}O_2$ was analyzed by X-ray powder diffraction and Rietveld refinement. The material showed a single phase of a layered structure with the space group R-3m. The lattice parameter(a, c) of $LiCo_{0.97}Mg_{0.03}O_2$ was larger than that of $LiCoO_2$. The electrical conductivity of sintered samples was measured by the Van der Pauw method. The electrical conductivities of $LiCoO_2$ and $LiCo_{0.97}Mg_{0.03}O_2$ were $2.11{\times}10^{-4}\;S/cm$ and $2.41{\times}10^{-1}\;S/cm$ at room temperature, respectively. On the basis of the Hall effect analysis, the increase in electrical conductivities of $LiCo_{0.97}Mg_{0.03}O_2$ is believed due to the increased carrier concentrations, while the carrier mobility was almost invariant. The electrochemical performance was investigated by coin cell test. $LiCo_{0.97}Mg_{0.03}O_2$ showed improved cycling performance as compared with $LiCoO_2$.

Development of Mg-18wt.%Ni-Hydrogen-Storage Alloy by Mechanical Alloying (기계적인 합금화에 의한 Mg-18wt.%Ni 수소저장합금의 개발)

  • Song, Myoung-Youp;Ahn, Dong-Su;Kwon, Ik-Hyun;Ahn, Hyo-Jun
    • Korean Journal of Materials Research
    • /
    • v.10 no.1
    • /
    • pp.15-20
    • /
    • 2000
  • The hydrogen-storage properties of a mechanically-alloyed Mg-18wt.%Ni mixture were investigated. Among the mixtures mechanically alloyed for 1h, 3h, and 6h, the mixture mechanically alloyed for 6h(MA 6h sample) shows the best properties of activation, hydriding, and dehydriding. The $Mg_2Ni$ phase forms in the mechanically-alloyed Mg-18wt.%Ni mixture along with hydriding-dehydriding cycling. The MA 6h sample is relatively easily activated and has higher hydriding rate than the pure Mg, the Mg-10wt.%Ni alloy, and a little lower hydriding rate than the $Mg_2Ni$alloy. The MA 6h sample lower dehydriding rate than the $Mg_2$Ni alloy but higher dehydriding rate than the pure Mg and the Mg-25wt.%Ni alloy. The MA 6h sample has larger hydrogen-storage capacity than the pure Mg and the other alloys.

  • PDF

Synthesis and electrochemical properties of layered $Li[Ni_xCo_{1-2x}Mn_x]O_2$ materials for lithium secondary batteries prepared by mechanical alloying (기계적 합금법을 이용한 리튬 2차 전지용 층상 양극물질 $Li[Ni_xCo_{1-2x}Mn_x]O_2$ 의 합성 및 전기화학적 특성에 관한 연구)

  • 박상호;신선식;선양국
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.16-16
    • /
    • 2002
  • The presently commercialized lithium-ion batteries use layer structured LiCoO₂ cathodes. Because of the high cost and toxicity of cobalt, an intensive search for new cathode materials has been underway in recent years. Recently, a concept of a one-to-one solid state mixture of LiNO₂ and LiMnO₂, i.e., Li[Ni/sub 0.5/Mn/sub 0.5/]O₂, was adopted by Ohzuku and Makimura to overcome the disadvantage of LiNiO₂ and LiMnO₂. Li[Ni/sub 0.5/Mn/sub 0.5/]O₂ has the -NaFeO₂ structure, which is characteristic of the layered LiCoO₂ and LiNiO₂ structures and shows excellent cycleability with no indication of spinel formation during electrochemical cycling. Layered Li[Ni/sub x/Co/sub 1-2x/Mn/sub x/]O₂ (x = 0.5 and 0.475) materials with high homogeneity and crystallinity were synthesized using a mechanical alloying method. The Li[Ni/sub 0.475/Co/sub 0.05/Mn/sub 0.475/]O₂ electrode delivers a high discharge capacity of 187 mAh/g between 2.8 and 4.6 V at a high current density of 0.3 mA/㎠(30 mA/g) with excellent cycleability. The charge/discharge and differential capacity vs. voltage studies of the Li[Ni/sub x/Co/sub 1-2x/Mn/sub x/]O₂ (x = 0.5 and 0.475) materials showed only one redox peak up to 50 cycles, which indicates that structural phase transitions are not occurred during electrochemical cycling. The magnitude of the diffusion coefficients of lithium ions for Li[Ni/sub x/Co/sub 1-2x/Mn/sub x/]O₂(x = 0.5 and 0.475) are around 10/sup -9/ ㎠/s measured by the galvanostatic intermittent titration technique (GITT).

  • PDF

A Development of Landfill Liner by Utilizing Waste Lime (폐석회를 이용한 매립지 차수재 개발)

  • 김준섭;이승학;박준범
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.521-528
    • /
    • 1999
  • As the size of our industry and population inclose, the byproducts such as municipal solid wastes, industrial wastes are in the increasing phase. The treatment of such things is rising as a social problem. Today, the final disposal of these wastes depends mostly on the landfill, and the sanitary landfill is required and designed for preventing soil and groundwater contamination. Clays have been used for a liner material of a sanitary landfill, however, the high quality clay is hard to come by and quite expensive as a lining material in our country. Using the waste lime produced abundantly every year from chemical processes was studied here, made from the proper mixing of the bentonite and the waste lime meets the regulations from the USEPA. The soil property index tests (sieve analysis, specific gravity test Atterberg limit test) were performed, and at last to confirm the sorption characteristics of the bentonite and the waste lime the sorption isotherm equilibrium test and the sorption isotherm were performed with Toluene and Ethylbenzene which are the main components of the leachate from the landfill.

  • PDF

Studies of the Exchange Processes of Mercury Across Air-soil Boundary (대기-토양 경계면간 수은의 교환현상에 대한 연구)

  • Kim, Ki-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.2
    • /
    • pp.107-117
    • /
    • 2010
  • The atmospheric geochemistry of mercury is generalls represented by gaseous elemental phase that exhibits the high environmental mobility and relatively long atmospheric residence time (c.a., 1 year) with its high chemical stability. In the recognition of the environmental significance of its global cycling, enormous efforts have been devoted to the measurements of Hg exchange across air-soil boundary. To be able to describe the fundamental aspects on this subject, the current development in the measurements of atmospheric exchange rates of mercury has been summarized using the current database reported worldwide. As a first step, different techniques commonly employed in its measurements are introduced with the discussions on their merits and disadvantages. Then, the results derived from various field measurement campaigns are also compared and discussed. The direction for the future study of mercury is presented at last.

Mechanochemical Synthesis of ZnMn2O4 and its Electrochemical Properties as an Anode Material for Lithium-ion Batteries

  • Park, Yoon-Soo;Oh, Hoon;Lee, Sung-Man
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3333-3337
    • /
    • 2011
  • $ZnMn_2O_4$ has been prepared by a mechanochemical process using a mixture of $Mn_2O_3$ and ZnO as starting materials, and investigated as a possible anode material for lithium-ion batteries. The phase evolution and morphologies of the ball-milled and annealed powders are characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy dispersive microanalysis (EDX), respectively. The solid-state reaction for the formation of $ZnMn_2O_4$, under the given experimental conditions, is achieved in a short time (30 min), and the prepared samples exhibit excellent electrochemical performances including an enhanced initial coulombic efficiency, high reversible capacity, and stable capacity retention with cycling.

Dielectric properties of $Bi_{3.25}La_{0.75}Ti_3O_{12}$ thin films with Bi contents (Bi 첨가량에 따른 BLT 박막의 유전특성)

  • 김경태;김창일;강동희;심일운
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.371-374
    • /
    • 2002
  • Bismuth lanthanum titanate thin films with excess Bi contents were prepared onto Pt/Ti/$SiO_2$/Si substrate by metalorganic decomposition (MOD) technique. The structure and morphology of the films were analyzed using X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. From the XRD analysis, BLT thin films show polycrystalline structure and the layered-perovskite phase was obtained over 10% excess of Bi contents. As a result of ferroelectric characteristics related to the Bi content of the BLT thin film, the remanent polarization and dielectric constant decreased with increasing over Bi content of 10 % excess. The BLT film with Bi content of 10% excess was measured to have a dielectric constant of n9 and dielectric loss of 1.85[%]. The BLT thin films showed little polarization fatigue test up to 3.5 x $10^{9}$ bipolar switching cycling.

  • PDF

Charge/Discharge Characteristics of $LiMnO_2$ Battery using Carbon as Anode Materials (카본을 부극으로 사용하는 $LiMnO_2$ 전지의 전기화학적 특성)

  • Jin, En-Mei;Lim, Seung-Gyu;Kim, Nam-In;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.277-278
    • /
    • 2008
  • Orthorhombic $LiMnO_2$(o-$LiMnO_2$) has attracted public attentions as a cathode materials of Lithium ion battery because it has low cost and high theoretical discharge capacity of 285mAh $g^{-1}$. In our study, o-$LiMnO_2$ is synthesized by quenching method. To verify their phase structure, X-ray diffraction is accomplished. Test cells are assembled to check electrochemical characteristics using acquired o-$LiMnO_2$ cathode and carbon anode. Charge/Discharge cycling was carried out for 50cycles. And impedance was measured at 1, 2, 5, 10, 30, 50cycle. During cycle test, the max discharge capacity was recorded 139mAh $g^{-1}$ at 10cycle.

  • PDF

Amentoflavone Acts as a Radioprotector for Irradiated v79 Cells by Regulating Reactive Oxygen Species (ROS), Cell Cycle and Mitochondrial Mass

  • Xu, Ping;Jiang, En-Jin;Wen, Si-Yuan;Lu, Dan-Dan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7521-7526
    • /
    • 2014
  • Radioprotective effects of amentoflavone were investigated by examining cell viability, apoptosis, cell cycling concentrations of intracellular ROS (reactive oxygen species), and relative mitochondrial mass by flow cytometry after $^{60}Co$ irradiation. Pretreatment with amentoflavone 24 hours prior to 8 Gy $^{60}Co$ ${\gamma}$-ray irradiation significantly inhibited apoptosis, promoted the G2 phase, decreased the concentration of ROS and mitochondrial mass. These results collectively indicate that amentoflavone is an effective radioprotective agent.

Synthesis of orthorhombic $LiMnO_2$ and its electrochemical properties

  • Kim, Jung-Min;Chung, Hoon-Taek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.2
    • /
    • pp.51-56
    • /
    • 2005
  • We prepared orthorhombic $LiMnO_2$ by emulsion drying method. The thermo-gravimetric measurement and X-ray diffraction studies indicated that the orthorhombic $LiMnO_2$ phase was formed above $800^{\circ}C$ by oxygen evaporation process from $LiMn_2O_4$ and $Li_2MnO_3$. In this process, we could control the ordering of $LiMnO_2$ with heating rate. It was observed that electrochemical properties depended on the ordering of this material; the ordered one exhibited good capacity retention, whereas the disordered one suffered capacity fading upon cycling, especially in the 3 V region. Transmission electron microscopic (TEM) study showed that this difference is related with difference in the stress relieving effects in the samples.