Browse > Article
http://dx.doi.org/10.5572/KOSAE.2010.26.2.107

Studies of the Exchange Processes of Mercury Across Air-soil Boundary  

Kim, Ki-Hyun (Department of Environment & Energy, Sejong University)
Publication Information
Journal of Korean Society for Atmospheric Environment / v.26, no.2, 2010 , pp. 107-117 More about this Journal
Abstract
The atmospheric geochemistry of mercury is generalls represented by gaseous elemental phase that exhibits the high environmental mobility and relatively long atmospheric residence time (c.a., 1 year) with its high chemical stability. In the recognition of the environmental significance of its global cycling, enormous efforts have been devoted to the measurements of Hg exchange across air-soil boundary. To be able to describe the fundamental aspects on this subject, the current development in the measurements of atmospheric exchange rates of mercury has been summarized using the current database reported worldwide. As a first step, different techniques commonly employed in its measurements are introduced with the discussions on their merits and disadvantages. Then, the results derived from various field measurement campaigns are also compared and discussed. The direction for the future study of mercury is presented at last.
Keywords
Atmospheric mercury; Emission; Deposition; Global cycle;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Shetty, S.K., C.-J. Lin, D.G. Streets, and C. Jang (2008) Modelestimate of mercury emission from natural sourcesin East Asia, Atmos. Environ., 42, 8674-8685.   DOI   ScienceOn
2 Song, X. and B.V. Heyst (2005) Volatilization of mercury fromsoils in response to simulated precipitation, Atmos.Environ., 39, 7494-7505.   DOI   ScienceOn
3 Streets, D.G., J. Hao, Y. Wu, J. Jiang, M. Chan, H. Tian, andX. Feng (2005) Anthropogenic mercury emissionsin China, Atmos. Environ., 39, 7789-7806.   DOI   ScienceOn
4 Wang, S., X. Fen, G. Qiu, L. Shang, P. Lia, and Z. Wei (2007)Mercury concentrations and air/soil fluxes in Wuchuanmercury mining district, Guizhou province,China, Atmos. Environ., 41, 5984-5993.   DOI   ScienceOn
5 Xiao, Z.F., J. Munthe, W.H. Schroeder, and O. Lindqvist (1991)Vertical fluxes of volatile mercury over forest soiland lake surfaces in Sweden, Tellus, 43B, 267-279.
6 Zhang, H., S.E. Lindberg, M.O. Barnett, A.F. Vetted, and M.S.Gustin (2002) Dynamic flux chamber measurementof gaseous mercury emission fluxes over soils. Part1: simulation of gaseous mercury emissions fromsoils using a two-resistance exchange interfacemodel, Atmos. Environ., 36, 835-846.   DOI   ScienceOn
7 Zhang, L., L.P. Wright, and P. Blanchard (2009) A review ofcurrent knowledge concerning dry deposition ofatmospheric mercury, Atmos. Environ., 43, 5853-5864.   DOI   ScienceOn
8 Lindberg, S.E., P.J. Hanson, T.P. Meyer, and K.-H. Kim(1998)Air/surface eschange of mercury vapor over forests-theneed for a reassessment of continental biogenicemissions, Atmos. Environ., 32(5), 895-908.   DOI   ScienceOn
9 Lyman, S.N., M.S. Gustin, E.M. Prestbo, and F.J. Marsik (2007)Estimation of dry deposition of atmospheric mercuryin Nevada by direct and indirect methods,Environ. Sci. Technol., 41, 1970-1976.   DOI   ScienceOn
10 Marsik, F.J., G.J. Keeler, S.E. Lindberg, and H. Zhang (2005)Air-surface exchange of gaseous mercury over amixed sawgrass-cattail stand within the Floridaeverglades, Environ. Sci. Technol., 39, 4739-4746   DOI   ScienceOn
11 Meyers, T.P., M.E. Hall, and S.E. Lindberg (1996) Use of themodified Bowen Ratio technique to measure fluxesof trace gases, Atmos. Environ., 30, 3321-3329.   DOI   ScienceOn
12 Nguyen, H.T., K.-H. Kim, M.-Y. Kim, and Z.-H. Shon (2008)Exchange pattern of gaseous elemental mercury inan active urban landfill facility, Chemosphere,70(5), 821-832.   DOI   ScienceOn
13 Orbist, D., F. Conen, R. Vogt, R. Siegwolf, and C. Alewell(2006) Estimation of $Hg^{\circ}$ exchange between ecosystemand the atmosphere using $^{222}Rn$ and $Hg^{\circ}$ concentration changes in the stable nocturnal boundarylayer, Atmos. Environ., 40, 856-866.   DOI   ScienceOn
14 Pacyna, E.G., J.M. Pacyna, and N. Pirron (2001) Europeanemissions of atmospheric mercury from anthropogenicsources in 1995, Atmos. Environ., 35, 2987-2996.   DOI   ScienceOn
15 Poissant, L. and A. Casimir (1998) Water-air and soil-airexchange rate of total gaseous mercury measured atbackground sites, Atmos. Environ., 32(5), 883-893.   DOI   ScienceOn
16 Rinklebe, J., A. During, M. Overesch, G.D. Laing, R. Wennrich,H.-J. Stark, and S. Mothes (2010) Dynamicsof mercury fluxes and their controlling factors inlarge Hg-polluted floodplain areas, Environ. Pollut.,158, 308-318.   DOI   ScienceOn
17 Hartman, J.S., P.J. Weisberg, R. Pillai, J.A. Ericksen, T. Kuiken,S.E. Lindberg, H. Zhang, J.J. Rytuba, andM.S. Gustin (2009) Application of a rule-based modelto estimate mercury exchange for three backgroundbiomes in the continental United States,Environ. Sci. Technol., 43, 4989-4994.   DOI   ScienceOn
18 Jacob, D.J. and D.A. Winner (2009) Effect of climate changeon air quality, Atmos. Environ., 43, 51-63.   DOI   ScienceOn
19 Kim, K.-H. and M.-Y. Kim (1999) The exchange of gaseousmercury across soil-air interface in a residentialarea of Seoul, Korea, Atmospheric Environment,33, 3153-3165.   DOI   ScienceOn
20 Kim, K.-H., M.Y. Kim, and G. Lee (2001) The soil-airexchange characteristics of total gaseous mercuryfrom a large scale municipal landfill area, AtmosphericEnvironment, 35(20), 3475-3493.   DOI   ScienceOn
21 Kim, K.-H., M.Y. Kim, J. Kim, and G. Lee (2002) Theconcentrations and fluxes of total gaseous mercuryin a western coastal area of Korea during the lateMarch 2001, Atmospheric Environment, 36(21),63-77.
22 Kim, K.-H., M.Y. Kim, J. Kim, and G. Lee (2003) Effects ofchanges in environmental conditions on atmosphericmercury exchange: Comparative analysis from a ricepaddy field during the two spring periods of 2001and 2002, J. Geophys. Res., 108(D19), 4607, doi:10.1029/2003JD003375.   DOI
23 Kim, K.-H., S.E. Lindberg, and T.P. Meyers (1995) Micrometeorologicalmeasurements of mercury vapor fluxesover background forest soils in eastern Tennessee,Atmos. Environ., 29(2) 267-282.   DOI   ScienceOn
24 Lindberg, S.E., H. Zhang, A.F. Vette, M.S. Gustin, M.O. Barnett,and T. Kuiken (2002) Dynamic flux chambermeasurement of gaseous mercury emission fluxesover soils: Part 2Feffect of flushing flow rate andverification of a two-resistance exchange interfacesimulation model, Atmos. Environ., 36, 847-859.   DOI   ScienceOn
25 Eckley, C.S., M. Gustin, C.-J. Lin, X. Li, and M.B. Miller(2010) The influence of dynamic chamber designand operating parameters on calculated surface-to-airmercury fluxes, Atmos. Environ., 44, 194-203.   DOI   ScienceOn
26 Engle, M.A., M.S. Gustin, and H. Zhang (2001) Quantifyingnatural source mercury emissions from the IvanhoeMining District, north-central Nevada, USA, Atmos.Environ., 35, 3987-3997.   DOI   ScienceOn
27 Feng, X. and G. Qiu (2008) Mercury pollution in Guizhou,Southwestern China-An overview, Sci. Total Environ.,400, 227-237.   DOI   ScienceOn
28 Gillis, A. and D.R. Miller (2000) Some potential errors in themeasurement of mercury gas exchange at the soilsurface using a dynamic flux chamber, The Sci. TotalEnviron., 260, 181-189.   DOI   ScienceOn
29 Graydon, J.A., V. St. Louis, Holgerhintelmann, S.E. Lindberg, K. Sandilands, J.M. Rudd, C. Kelly, B. Hall,and L. Mowat (2008) Long-term wet and dry depositionof total and methyl mercury in the remoteboreal ecoregion of Canada, Environ. Sci. Technol.,42, 8345-8351.   DOI   ScienceOn
30 Gustin, M.S., H. Biester, and C.S. Kim (2002) Investigationof the light-enhanced emission of mercury fromnaturally enriched substrates, Atmos. Environ., 36,3241-3254.   DOI   ScienceOn
31 Gustin, M.S., J.A. Ericksen, D.E. Schorran, D.W. Johnson,S.E. Lindberg, and J.S. Coleman (2004) Applicationof controlled mesocosms for understanding mercuryair-soil-plant exchange, Environ. Sci. Technol.,38, 6044-6050.   DOI   ScienceOn
32 Gustin, M.S., S. Lindberg, F. Marsik, A. Casimir, R. Ebinghaus,G. Edwards, C. Hubble-Fitzgerald, R. Kemp,H. Kock, T. Leonard, J. London, M. Majewski, C.Montecinos, J. Owens, M. Pilote, L. Poissant, P.Rasmussen, F. Schaedlich, D. Schneeberger, W.Schroeder, J. Sommar, R. Turner, A. Vette, D.Wallschlaeger, Z. Xiao, and H. Zhang (1999) NevadaSTROMS project: measurement of emissions fromnaturally enriched surfaces, Journal of GeophysicalResearch, 104(D17), 21831-21844.   DOI
33 Bash, J.O. and D.R. Miller (2008) A relaxed eddy accumulationsystem for measuring surface fluxes of total gaseousmercury, Journal of Atmospheric and Oceanic Technology,25, 244-257.   DOI   ScienceOn
34 Brosset, C. (1982) Total airborne mercury and its possible origin,Water, Air and Soil Pollut., 17, 37-50.
35 Carpi, A. and S.E. Lindberg (1998) Application of a $Teflon^{TM}$dynamic flux chamber for quantifying soil mercuryflux: tests and results over background soil, Atmos.Environ., 32(5), 873-882.   DOI   ScienceOn
36 Choi, H.-D. and T.M. Holsen (2009) Gaseous mercury emissionsfrom unsterilized and sterilized soils: The effectof temperature and UV radiation, Environ. Pollut.,157, 1673-1678.   DOI   ScienceOn
37 Cobos, D.R., J.M. Baker, and E.A. Nater (2002) Conditionalsampling for measuring mercury vapor fluxes,Atmos. Environ., 36(27), 4309-4321.   DOI   ScienceOn
38 Eckley, C.S. and B. Branfireun (2008) Gaseous mercury emissionsfrom urban surfaces: Controls and spatiotemporaltrends, Appl. Geochem., 23, 369-383.   DOI   ScienceOn