• Title/Summary/Keyword: Phase analysis

Search Result 11,887, Processing Time 0.044 seconds

Digital PLL Control for Phase-Synchronization of Grid-Connected PV System (계통 연계형 태양광 발전 시스템의 위상 동기화를 위한 디지털 PLL 제어)

  • 김용균;최종우;김흥근
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.9
    • /
    • pp.562-568
    • /
    • 2004
  • The frequency and phase angle of the utility voltage are important in many industrial systems. In the three-phase system, they can be easily known by using the utility voltage vector. However, in the case of single phase system, there are some difficulties in detecting the information of utility voltage. In conventional system, the zero-crossing detection method is widely used, but could not obtain the information of utility voltage instantaneously. In this paper, the new digital PLL control using virtual two phase detector is proposed with a detailed analysis of single-phase digital PLL control for utility connected systems. The experimental results under various utility conditions are presented and demonstrate an excellent phase tracking capability in the single-phase grid-connected operation.

Emulsion rheology and properties of polymerized high internal phase emulsions

  • Lee, Seong-Jae
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.4
    • /
    • pp.183-189
    • /
    • 2006
  • High internal phase emulsions are highly concentrated emulsion systems consisting of a large volume of dispersed phase above 0.74. The rheological properties of high internal phase water-in-oil emulsions were measured conducting steady shear, oscillatory shear and creep/recovery experiments. It was found that the yield stress is inversely proportional to the drop size with the exponent of values between 1 and 2. Since the oil phase contains monomeric species, microcellular foams can easily be prepared from high internal phase emulsions. In this study, the microcellular foams combining a couple of thickeners into the conventional formulation of styrene and water system were investigated to understand the effect of viscosity ratio on cell size. Cell size variation on thickener concentration could be explained by a dimensional analysis between the capillary number and the viscosity ratio. Compression properties of foam are important end use properties in many practical applications. Crush strength and Young's modulus of microcellular foams polymerized from high internal phase emulsions were measured and compared from compression tests. Of the foams tested in this study, the foam prepared from the organoclay having reactive group as an oil phase thickener showed outstanding compression properties.

A Kinematic Comparative Analysis of Yoko Ukemi(side breakfall) by Each Stage in Judo[ I ] (유도 단계별 측방낙법의 운동학적 변인 비교분석[ I ])

  • Kim, Eui-Hwan;Kim, Sung-Sup
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.203-218
    • /
    • 2004
  • The purpose of this study was to analyze the comparisons of the kinematical variables when performing Yoko Ukemi(side breakfall) by three Stage in Judo. The subjects were four male judokas who were trainees Y. I. University Squad members and the Yoko Ukemi were filmed by two S-VHS 16mm video cameras(60fields/sec.). The selected times were subject to KWON 3D analysis program and kinematical analysis to compare variables of three Yoko Ukemi. Temporal variables(total time-required : TK, TR by each phase), the body part touched order on the mat and COG variables were computed through video analysis while performing right Yoko Ukemi by three stage. From the data analysis and discussion, the following conclusions were drawn : 1. Temporal variables : total time-required(TR) when performing Yoko Ukemi(side breakfall) by each stage, the first stage(full squat posture: FP : 1.11sec.) showed the shortest time, the next was 3rd(Shizenhontai, straight natural posture: NP : 1.41sec.), and 2nd(Jigohontai, straight defensive posture, DP : 1.42sec.), respectively- 2. TR when performing Yoko Ukemi(side breakfall) by each stage, and phase : the first phase(take of phase, average 0.68sec.) showed the longest time, next was the third phase(ukemi phase, 0.39sec.), and the second phase(air phase, 0.23sec.), respectively. 3. When performing yore Ukemi the body part touched order and TR on the mat : hip(0.94sec.) showed the shortest time, the next was elbow hand(0.97sec.), back(0.98sec.), and shoulder(1.04sec.) order. The hip part touched on the mat the first, but slap the mat in order to alleviate the shock try hand palm and forearm before receiving impact (difference 0.03sec,) 4. Vertical COG variables in each event by each stage : e1(ready position, average 78.33cm) moved the highest, the next was e2(jumping position, 70.14cm), e3(transition position, average 64.00cm), e4(landing position, average 35.99cm), and e5(ukemi position, average 18.32cm) order, gradual decrease respectively. And the difference of COG were showed in initial by each stage, because position fo Yoko Ukemi was difference by each stage in preparation position, but in accordance with executing of Ukemi phase that difference of COG was by decreasing, almost equal displacement in e4(landing) and e5(Ukemi)position finally.

Analysis and Design of the Interface Inductor and the DC Side Capacitor in a STATCOM with Phase and Amplitude Control Considering the Stability of the System

  • Zhao, Guopeng;Han, Minxiao;Liu, Jinjun
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.193-200
    • /
    • 2012
  • Previous publications regarding the design and specifications of the interface inductor and the DC side capacitor for a STATCOM usually deal with the interface inductor and the DC side capacitor only. They seldom pay attention to the influences of the interface inductor and capacitor on the performance of a STATCOM system. In this paper a detailed analysis of influence of the interface inductor and the DC side capacitor on a STATCOM system and the corresponding design considerations is presented. Phase and amplitude control is considered as the control strategy for the STATCOM. First, a model of a STATCOM system is carried out. Second, through frequency domain methods, such as transfer functions and Bode plots, the influence of the interface inductor and the DC side capacitor on the stability and filtering characteristics of the STATCOM are extensively investigated. Third, according to this analysis, the design considerations based on the phase margin for the interface inductor and the DC side capacitor are discussed, which leads to parameters that are different from those of the traditional design.

Analysis of Solidification Process Around a Vertical Tube Considering Density Change and Natural Convection (수직원관 주위에서 밀도차와 자연대류를 고려한 응고과정 해석)

  • 김무근;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.142-155
    • /
    • 1992
  • Numerical analysis is performed for the unsteady axisymmetric two dimensional phase change problem of freezing of water around a vertical tube. Heat conduction in the tube wall and solid phase, natural convection in liquid phase and volume expansion caused by density difference between solid and liquid phases are included in the numerical analysis. Existing correlation is used for estimating density-temperature relation of water, and the effect of volume expansion is reflected as fluid velocity at the interface and the free surface. As pure water has maximum density at 4.deg. C, it is found that there exists an initial temperature at which the flow direction reverses near the interface and by this effect the slope of interface becomes reversed depending on the initial temperature of water. By considering natural convection and solid-liquid density difference in the calculation, their effects on phase change process are studied and the effects of various parameters are also studied quantitatively.

A Theoretical Analysis on Pressure Loss and Gas Volumetric Fraction of Gas-Liquid Two-Phase Flow (기액이상류의 압력손실과 가스상의 체적분율에 관한 이론적 해석)

  • Choi, Bu-Hong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.1
    • /
    • pp.63-69
    • /
    • 2009
  • Gas volumetric fractions and pressure loss are very important parameters in understanding and predicting gas-liquid two-phase flows. They are also essential to design large heat exchanging system in many industries, boiler and refrigerating systems mounted at ships. This paper therefore presents a theoretical method of predicting the pressure loss and gas volumetric fractions in gas-liquid two-phase flows for the whole range of pipe inclinations. The theoretical analysis is based on the two-fluid stratified flow model. It also provides the results of the comparisons between this theoretical analysis results and previous experimental results.

  • PDF

Predicting Extreme-Thickness of Phase Fronts in HMX- and Hydrocarbon-based Propellants (로켓 추진제의 익스트림-스케일 상면 두께 예측)

  • Yoh, Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.82-88
    • /
    • 2009
  • The structure of steady wave system is considered which is admitted by the continuum equations for materials that undergo phase transformations with exothermic chemical reaction. With its theoretical basis in one-dimensional continuum shock structure analysis, the present approach estimates the micro-width of waves associated with phase transformation phenomena, n-heptane is selected as the hydrocarbon fuel for evaporation and condensation analysis while HMX is used for melting and freezing analysis of solid rocket propellant. The estimated thickness of evaporation - condensation front of n-heptane is on the order of $10^{-2}$ micron while the HMX melting - freezing front thickness is estimated at 1 micron.

Eulerian Two-Phase Flow Analysis for Solid-Liquid Mixing in a Industrial Mixer (산업용 교반기의 고체-액체 혼합에 대한 Eulerian Two-Phase 유동해석)

  • Song, Ae-Kyung;Hur, Nahm-Keon;Won, Chan-Shik;Ahn, Ick-Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.471-474
    • /
    • 2006
  • The Mixer is apparatus that help precipitation or an inhomogeneous distribution of various phases to be mixed and that user makes necessary material mixing one or the other. Mainly the mixer which is used from chemical and food industry is very important system in engineering that mixes the material. The inside flow of the mixer under the actual states which put a basis in flow of the fluid is formed rotation of the impeller. The inside flow of impeller will be caused by various reasons change with shape of impeller, number of rotation, mixing material and flow pattern of free surface etc. Also mixer study depended in single-phase flow and experimental research. So the numerical analysis of flow mixing solid-fluid particle is simulated. It is become known, that the case where agitator inside working fluid includes the solid particle the sinkage reverse which the solid particle has decreases an agitation efficiency. From the research which it sees the hazard solid which examines the effect where the change of the sinkage territory which it follows agitation number of revolution and diameter of the particle goes mad to an agitator inside flow distribution - numerical analysis the inside flow distribution of liquid state with Eulerian Two-Phase Method.

  • PDF

A Study of Calibration Bias in the Analysis of Airborne Carbonyl Compounds between Gaseous and Liquid-phase Standards by High Performance Liquid Chromatography (HPLC) (대기 중 Carbonyl 성분들의 검량 분석 기술에 대한 연구: 액상 대비 기체상 표준시료의 오차발생 특성 연구)

  • Lee, Min-Hee;Kim, Ki-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.1
    • /
    • pp.52-58
    • /
    • 2012
  • In this study, the effect of standard phase difference in calibration of carbonyl compounds (CC) was evaluated by using their standards prepared in both gaseous and liquid phase. For this analysis, standards in both phases were prepared for 6 different CCs (formaldehyde (FA), acetaldehyde (AA), propionaldehyde (PA), butyraldehyde (BA), isovaleraldehyde (IA) and valeraldehyde (VA)) at similar concentration levels. Their gaseous standard was calibrated after derivatization with three types of DNPH cartridge, and their calibration results were compared against liquid-phase standards. Although there was a strong compatibility between 2 phases for CCs with lower molecular weights (e.g., formaldehyde and acetaldehyde), it was not the case for the heavier CCs. The results of our analysis indicate that the analytical bias of the heavier CCs can be significantly large (by more than a few tens of %). As a result, underestimation of hevier CCs can be significant, if their gaseous samples are quantified by liquid phase standard.

Modeling and Analysis of SEIG-STATCOM Systems Based on the Magnitude-Phase Dynamic Method

  • Wang, Haifeng;Wu, Xinzhen;You, Rui;Li, Jia
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.944-953
    • /
    • 2018
  • This paper proposes an analysis method based on the magnitude-phase dynamic theory for isolated power systems with static synchronous compensators (STATCOMs). The stability margin of an isolated power system is greatly reduced when a load is connected, due to the disadvantageous features of the self-excited induction generators (SEIGs). To analyze the control process for system stability and to grasp the dynamic characteristics in different timescales, the relationships between the active/reactive components and the phase/magnitude of the STATCOM output voltage are derived in the natural reference frame based on the magnitude/phase dynamic theory. Then STATCOM equivalent mechanical models in both the voltage time scale and the current time scale are built. The proportional coefficients and the integral coefficients of the control process are converted into damping coefficients, inertia coefficients and stiffness coefficients so that analyzing its controls, dynamic response characteristics as well as impacts on the system operations are easier. The effectiveness of the proposed analysis method is verified by simulation and experimental results.