• Title/Summary/Keyword: Phase Stability

Search Result 1,971, Processing Time 0.034 seconds

Response Time Optimization of DVR for 3-Phase Phase-Controlled Rectifier (3상 위상제어 정류기를 위한 DVR의 반응시간 최적화)

  • Park, Chul-Woo;Joung, Sookyoung;Ryu, Jee-Youl;Lee, Dae-Seup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.3
    • /
    • pp.195-201
    • /
    • 2013
  • In this paper, we present optimization technique for the response time of DVR (Dynamic Voltage Restorer) and the possible compensation range of voltage dip by the DVR system. To protect 3-phase phase-controlled rectifier from voltage dip, DVR system needs to have optimum response time as an important design factor. Although the fast response time of DVR ensures wider range of voltage dip, DVR controller has so high cost and poor stability. This paper proposes DVR system with optimum response time required for certain intensity of voltage dips and good stability to support possible compensation range of voltage dip. Proposed technique showed optimum response time and good stability for overall system. We believe that proposed technique is reliable and useful in DVR design.

Phase and Amplitude Drift Research of Millimeter Wave Band Local Oscillator System

  • Lee, Chang-Hoon;Je, Do-Heung;Kim, Kwang-Dong;Sohn, Bong-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.2
    • /
    • pp.145-152
    • /
    • 2010
  • In this paper, we developed a local oscillator (LO) system of millimeter wave band receiver for radio astronomy observation. We measured the phase and amplitude drift stability of this LO system. The voltage control oscillator (VCO) of this LO system use the 3 mm band Gunn oscillator. We developed the digital phase locked loop (DPLL) module for the LO PLL function that can be computer-controlled. To verify the performance, we measured the output frequency/power and the phase/amplitude drift stability of the developed module and the commercial PLL module, respectively. We show the good performance of the LO system based on the developed PLL module from the measured data analysis. The test results and discussion will be useful tutorial reference to design the LO system for very long baseline interferometry (VLBI) receiver and single dish radio astronomy receiver at the 3 mm frequency band.

Mechanism Analysis and Stabilization of Three-Phase Grid-Inverter Systems Considering Frequency Coupling

  • Wang, Guoning;Du, Xiong;Shi, Ying;Tai, Heng-Ming;Ji, Yongliang
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.853-862
    • /
    • 2018
  • Frequency coupling in the phase domain is a recently reported phenomenon for phase locked loop (PLL) based three-phase grid-inverter systems. This paper investigates the mechanism and stabilization method for the frequency coupling to the stability of grid-inverter systems. Self and accompanying admittance models are employed to represent the frequency coupling characteristics of the inverter, and a small signal equivalent circuit of a grid-inverter system is set up to reveal the mechanism of the frequency coupling to the system stability. The analysis reveals that the equivalent inverter admittance is changed due to the frequency coupling of the inverter, and the system stability is affected. In the end, retuning the bandwidth of the phase locked loop is presented to stabilize the three-phase grid-inverter system. Experimental results are given to verify the analysis and the stabilization scheme.

Phase stability and Sintered Properties of 1.5mol% Yttria-stabilized Zirconia Ceramics Fabricated by Low Temperature Sintering (저온 열처리로 제작된 1.5 mol% 이트리아 안정화 지르코니아 세라믹스의 상 안정성 및 소결물성)

  • Kyung Tae Kim;Han Cheol Choe;Jeong Sik Park;Jong Kook Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Phase stability of tetragonal crystals in yttria-stabilized zirconia ceramics is dependent on the content of yttria and the heat-treatment condition, related with mechanical properties. In this study, we fabricated the 1.5 mol% yttria-stabilized zirconia (1.5Y-YSZ) ceramics by cold isostatic pressing (CIP) and post-sintering at temperature range of 1200 to 1350℃ for 2 hours and investigated the sintered properties and microstructural evolution. Sintered and microstructural parameters, i.e, apparent density, grain size and phase composition of 1.5Y-YSZ ceramics were mainly dependent on the sintering temperature. Maximum sintered density of 99.4 % and average grain size of 200-300 nm could be obtained from the heat-treatment condition above sintering temperature at 1300℃ for 2 hours, possessing the superior mechanical hardness with 1200 Hv. However, phase stability of tetragonal grains in 1.5 YSZ ceramics is very low, inducing the phase transformation to monoclinic crystals on specimen surface during cooling after heat-treatment.

Application of Forced Oscillation Technique for Pitch Dynamic Stability Derivatives of a Missile Model (미사일 모델의 피치 동안정미계수 측정을 위한 강제진동기법의 적용)

  • 김승필;조환기;백승욱
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.81-87
    • /
    • 2000
  • This paper presents an application of forced oscillation technique to measure pitch dynamic stability derivatives of a missile model in the low speed wind tunnel. The missile model is oscillated by D.C. electric servomotor with constant amplitudes and frequencies. Phase shift is determined as the difference of peak values between input and output signals from the dynamic stability balance installed at the center of gravity of the model. Stability derivatives were calculated by using phase shifts, amplitudes, forcing moments and input frequencies. Test results show the proper usage of the force oscillation technique with good damping effects.

  • PDF

Study on the Influence of Cubic Liquid Crystalline Phases of Monoolein on the Stability and Transdermal Delivery of Retinylpalmitate (Monoolein액정상이 Retinylpalmitate의 안정성과 경피전달에 미치는 효과에 관한 연구)

  • Lee, Kyoung-Gum;Kang, Myung-Joo;Choi, Young-Wook;Lee, Jae-Hwi
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.4
    • /
    • pp.243-247
    • /
    • 2007
  • Retinoids have many important and diverse functions and particularly, have been widely used as anti-aging agent and for the treatment of acne and psoriasis in cosmetics. However, retinoids have low stability against the air, light, water, oxygen and heat, thus, to stabilize the retinoids in formulations is very critical procedure. In this study, cubic liquid crystalline phase of monoolein was applied to stabilize the retinylpalmitate (RP) and to enhance the transdermal permeation. Cubic liquid crystalline phase significantly enhanced the stability of RP. After 15 days, the content of RP in the cubic formulation was 94.7% while the content of RP in ethanol solution was below 0.5% at room temperature. Although BHT containing crystalline phase showed the slightly increased stability of RP, there were no significant differences in RP stability between with or without antioxidants (ascorbic acid, ${\alpha}$-tocopherol, BHT, BHA) at $40^{\circ}C$. The skin retention of RP in crystalline formulations was approximately $5.3{\sim}6.4$ times greater than that of o/w cream formulation. Incorporation of RP into cubic liquid crystalline phase of monoolein effectively stabilized the RP and worked as excellent topical vehicle for RP. Liquid crystalline phase is considered to be suitable formulation for RP for topical delivery system as a stabilizer and permeation enhancing agent.

Phase Model Analysis of Yeast Glycolytic Oscillation

  • Kim, Won-Sup;Han, Seung-Kee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.78-78
    • /
    • 2003
  • The glycolysis is one of the most important metabolic reactions through which the glucose is broken and the released energy is stored in the form of ATP. Rhythmic oscillation of the intracellular ATP is observed as the amount of the influx glucose is small in the yeast. The oscillation is also observed in the population of the yeast cells, which implies that the glycolytic oscillation of the yeasts is synchronous. It is not clear how the synchronous oscillation could be organized among the yeast cells. Although detailed mathematical models are available that show synchronization of the glycolytic oscillation, the stability of the synchronous oscillation is not clear. We introduce a phase model analysis that reduces a higher dimensional mathematical model to a much simpler one dimensional phase model. Then, the stability of the synchronous oscillation is easily determined by the stability of the corresponding fixed solution in the phase model. The effect of perturbation on the oscillatory rhythm is also easily analyzed in the reduced phase model.

  • PDF

Controller Design of the 2nd-order System Based on Phase Margin Specifications

  • Lee, Bo-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.54.3-54
    • /
    • 2001
  • This paper presents a controller design technique for standard 2nd-order system satisfying user-specified phase margin. A simple method is presented to meet stability margin for the 2nd-order system, which is important since the 2nd-order plant models are frequently encountered in the practical plant models such as actuators of the optical drive systems. Through the comparison of the specified stability margin and achieved stability margin, it is shown in the simple example that the proposed technique is useful in the initial design of control systems with stability margin specifications.

  • PDF

ANALYSIS OF THE PHASE STABILITY OF FINE $Fe_{90}Ni_{10}$ ALLOY PARTICLES

  • Widatallah, H.M.;Huang, R.S.;Hsia, Y.F.;Lee, X.M.;Wang, J.H.;Lu, H.X.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.543-547
    • /
    • 1995
  • A set of $Fe_{1-x}Ni_{x}$ (x=0.10, 0.25, 0.30, 0.35, 0.50, 0.60, 0.75, 0.85) fine particles prepared by the gas evaporation technique was studied by $M\"{o}ssbauer$, XRD and other techniques. The XRD and $M\"{o}ssbauer$ patterns of the sample with x=0.10 ($Fe_{90}Ni_{10}$) were found to be exceptionally different, showing an austenite phase stability when the particles are quenched. This phase stability is quite different from that of the corresponding bulk alloy. Using binomial distrbution fits of the $M\"{o}ssbauer$ spectra of the particles in terms of nearest and next nearest neighbour configurations around the Fe atoms, an analysis of this phase stability is given. The changes in the relative intensities of the resulting magnetic sextets are used to determine the increase in martensite following the austenite-martensite transformation process. The stable austenite can, therefore, be determined. This stability may be related to the oxide surface layer and the small number of atoms of these fine particles.

  • PDF

Robust Digital Nonlinear Friction Compensation (견실한 비선형 마찰보상 이산제어)

  • 강민식;송원길;김창재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.987-993
    • /
    • 1996
  • This report suggests a new non-linear friction compensation for digital control systems. This control adopts a hysteric nonlinear clement which can introduce the phase lead of the control system to compensate the phase delay comes from the inherent time delay of a digital control. The Lyapunov direct method is used to prove the asymtotic stability of the suggested control, and the stability and the effectiveness are verified analytically and experimentally on a single axis servo driving system.

  • PDF