• Title/Summary/Keyword: Phase Measuring Technique

Search Result 138, Processing Time 0.025 seconds

Production and measurement of a super-polished low-scattering mirror substrate (초연마 저산란 반사경 기판 제작과 평가)

  • 조민식
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.157-165
    • /
    • 1999
  • Production and measurement of a super-polished few-ppm-scattering mirror substrate are investigated. In order to improve the surface roughness directly determining scattering, the super-polishing process using Bowl-Feed technique is tried. The surface quality of the super-polished substrate is estimated by the phase-measuring interferometer. For the reliable roughness measurement using the interferometer, data averaging method is applied so that the optimal data averaging condition, 30 phase-data averaging and 20 intensity-data averaging, minimizing the measurement error is experimently searched. Based on the optimal data averaging condition, surface roughness of home-made mirror substrate is measured to be less than $0.5{\AA}$ rms corresponding to 2-ppm total-integrated-scattering.

  • PDF

Measurement of Wafer Deformation using Deflectometry (편향법을 이용한 웨이퍼 변형 측정)

  • Lee, Hodong;Shin, Sanghoon;Yu, Younghun
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.6
    • /
    • pp.324-330
    • /
    • 2013
  • Phase-measuring deflectometry is a full-field gradient measuring technique that lends itself very well to testing specular optical surfaces. We have measured deformation of a large specular surface by deflectometry. In this work, we have used a Fourier-transform method to get the phase from a measured deformed fringe pattern, and we have used least squares method to obtain the height information of the specular surface from the calculated slope. Experimentally, we have confirmed that deflectometry can be used for deformation measurement of a specular surface like that of a wafer.

Test and Evaluation of a Newly Built Multi-purpose Transmission Type Polariscope (다목적 투과형 편광기 시험 및 평가)

  • Baek Tae Hyun;Kim Myung Soo;Lee Choon Tae;Kim Whan;Park Tae Guen
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.73-81
    • /
    • 2005
  • A multi-purpose polariscope is developed by applying an electro-mechanical control system to a diffused transmission-type circular polariscope. A conventional polariscope is only good for manual control of optical elements. The new polariscope system is devised to be controlled through two stepping motors and two magnetic clutches. The developed system has both functions of a conventional linear- and circular-polariscope. The new polariscope can be used not only for the point-wise measurement using Tardy compensation technique but also for the full-field fringe analysis using conventional and/or phase measuring techniques, if applicable.

Determining the Refractive Index Distribution of an Optical Component Using Transmission Deflectometry with Liquids (액체와 투과형 편향법을 이용한 광학부품의 굴절률 분포 측정)

  • Shin, Sanghoon;Yu, Younghun
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.6
    • /
    • pp.326-333
    • /
    • 2014
  • Phase-measuring deflectometry is a full-field gradient measuring technique that lends itself very well to testing specular optical surfaces. We have measured the deformation of the surface of a lens by transmission deflectometry with liquids. In this study, a method is proposed for measuring the refractive index distribution of a transparent object component. The proposed method combines transmission deflectometry with liquids. The deformed fringe patterns of a sample immersed in different fluids are recorded, and then the three-dimensional phase information of the sample is reconstructed numerically. We have used phase-shifting and temporal phase-unwrapping methods to retrieve the phase from the measured deformed fringe pattern, and we have used a least-squares method to find the height information of the specular surface from the calculated slope. In particular, we have proposed a theoretical model for determining the refractive index of sample and planar convex lens are demonstrated experimentally.

A Research on the Magnitude/Phase Asymmetry Measurement Technique of the RF Power Amplifier Based on the Predistortive Tone Cancellation Technique

  • Choi, Heung-Jae;Shim, Sung-Un;Kim, Young-Gyu;Jeong, Yong-Chae;Kim, Chul-Dong
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.2
    • /
    • pp.73-77
    • /
    • 2010
  • This paper proposes a novel memory effect measurement technique in RF power amplifiers(PAs) using a two-tone intermodulation distortion(IMD) signal with a very simple and intuitive algorithm. Based on the proposed predistortive tone cancellation technique, the proposed measurement method is capable of measuring the relative phase and magnitude of the third-order and fifth-order IMDs, as well as the fundamental signal. The measured relative phase between the higher and lower IMD signal for specific tone spacing can be interpreted as the group delay(GD) information of the IMD signal concerned. From the group delay analysis, we can conclude that an adaptive control of GD as well as the magnitude and phase is a key function in increasing the linearization bandwidth and the dynamic range in a predistortion(PD) technique.

Estimation Technique of Frequency using FIR Filter in the Power System (FIR 필터를 이용한 전력계통의 주파수 추정기법)

  • 남시복;박철원;신명철
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.50 no.3
    • /
    • pp.101-108
    • /
    • 2001
  • Frequency is an important operating parameter of a power system. Electric power systems sustain transient frequency swings whenever the balance between generation and load does not no longer hold. To cope with this constraints, it requires an accurate and high speedy frequency deviation estimation technique and suitable adjustment to obtain the Power system energy balance. This paper describes a digital signal processing technique for measuring the operating frequency of a power system. The fundamental frequency component of 3-phase signal is first extracted by using an algorithm based on FIR filter. The rate change of the phase angle is used for estimation. To confirm the validity of the proposed algorithm, the simulation studies carried out on a typical 154KV double T/L system by using EMTP software. Some test results are presented in the paper.

  • PDF

Measurement of a Mirror Surface Topography Using 2-frame Phase-shifting Digital Interferometry

  • Jeon, Seok-Hee;Gil, Sang-Keun
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.245-250
    • /
    • 2009
  • We propose a digital holographic interference analysis method based on a 2-frame phase-shifting technique for measuring an optical mirror surface. The technique using 2-frame phase-shifting digital interferometry is more efficient than multi-frame phase-shifting techniques because the 2-frame method has the advantage of a reduced number of interferograms, and then takes less time to acquire the wanted topography information from interferograms. In this measurement system, 2-frame phase-shifting digital interferograms are acquired by moving the reference flat mirror surface, which is attached to a piezoelectric transducer, with phase step of 0 or $\pi$/2 in the reference beam path. The measurements are recorded on a CCD detector. The optical interferometry is designed on the basis of polarization characteristics of a polarizing beam splitter. Therefore the noise from outside turbulence can be decreased. The proposed 2-frame algorithm uses the relative phase difference of the neighbor pixels. The experiment has been carried out on an optical mirror which flatness is less than $\lambda$/4. The measurement of the optical mirror surface topography using 2-frame phase-shifting interferometry shows that the peak-to-peak value is calculated to be about $0.1779{\mu}m$, the root-mean-square value is about $0.034{\mu}m$. Thus, the proposed method is expected to be used in nondestructive testing of optical components.

An Adaptive Scheme for Frequency Measurement in Power System (적응기법을 이용한 전력계통의 주파수 측정)

  • Park, Cheol-Won;Nam, Si-Bok;Sin, Myeong-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.3
    • /
    • pp.143-152
    • /
    • 2002
  • Frequency is regarded as one of most important indices for the operating power systems. Several digital techniques for measuring frequency have been presented in the last decades. This paper proposes a design and implementation an adaptive scheme using phase angle difference calculation fort frequency measuring in power system. The advantages of the proposed technique are demonstrated by fault signals from EMTP simulation and user defined arbitrary signals by Excel program. The proposed technique is compared with the conventional methods. Performance teat results indicate that the proposed technique provides accurate measures in pretence of noise and harmonics and in case faults and is suitable for measurement near-nominal, nominal. and off-nominal frequencies. We can see that It will be useful in microprocessor based relays and digital metiers that need to measure power system frequency.

A Study on the Orientational properties of Phospholipid Monolayers (지질단분자막의 배향 특성에 관한 연구)

  • Lee, Kyung-Sup;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1217-1219
    • /
    • 1995
  • The organization of phospholipid monolayers on a water surface was investigated by means of Maxwell-Displacement-Current(MDC)-Measuring technique. The phase transition from the gaseous phase to the gaseous-fluid phase which accompanies the polar ordering of lipid molecules was detected by the technique in the range of immeasurable low surface pressure and the molcular-area which gives the onset of the transition was determined for lipid monolayers. The vertical component of dipole moment of lipid membranes was determined from the charge flowing the rough the circuit, and we measured differential themal analysis of sample.

  • PDF

Correlation of Axillary Artery Pressure and Phase of Esophageal Impedance in Chickens

  • Nakajima, Isao;Kuwahira, Ichiro;Hori, Shuho;Mitsuhashi, Kokuryo
    • Journal of Multimedia Information System
    • /
    • v.9 no.2
    • /
    • pp.161-170
    • /
    • 2022
  • Under General anesthesia with isoflurane, we insert a chicken's esophageal catheter into the near the left atrium. 1MHz radio wave was added to electrocardiogram electrodes of the esophagus, and the change of impedance (phase) was obtained by amplitude synchronous detection technique. At the same time, a thin tube is surgically inserted into the axillary artery to continuously measure blood pressure. The correlation between impedance (phase) and blood pressure was obtained. Both showed a very high correlation (R2=0.9665). It was also observed the waveform flowing from the left atrium into the left ventricle. When an individual infected with the avian influenza virus develops, the cytokine storms lead to hypotension earlier than the test for antigen-antibody reaction. In order to detect this, in the future, this impedance technique will be useful for screening individuals infected with avian influenza virus by measuring the blood pressure of chickens in cages in a non-contact manner using microwaves.