• Title/Summary/Keyword: Phase Distribution

검색결과 2,987건 처리시간 0.033초

Development and Analysis of a Two-Phase Excitation Switched Reluctance Motor with Novel Winding Distribution Used in Electric Vehicles

  • Zhu, Yueying;Yang, Chuantian;Yue, Yuan;Zhao, Chengwen;Zhang, Yan
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2364-2375
    • /
    • 2018
  • Two-phase simultaneous excitation mode of the switched reluctance motor (SRM) has been shown to effectively improve the average torque output compared with traditional single-phase excitation mode. But the torque ripple of the two-phase excitation SRM with traditional winding distribution increases because of the inconsistent electromagnetic field. To reduce the torque ripple, a two-phase excitation 8/6 SRM with novel winding distribution is proposed in this paper. The static torques generated by various magnetic circuits are analyzed and obtained to verify the torque increase. Then the electromagnetic characteristics of the proposed SRM are investigated by the numerical calculation method in detail, including flux linkage, inductance, and torque. Finally, an experiment for measuring the SRM static electromagnetic characteristics and dynamic performance is designed and performed based on the novel mode, and the comparing results show that the proposed two-phase SRM is effective.

3상 배전계통에서의 부하조류해석 알고리즘에 관한 연구 (A Study for a load flow analysis algorithm in the three-phase distribution network)

  • 류재홍;김재언
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.150-152
    • /
    • 2000
  • This paper introduces an advanced three-phase load flow analysis algorithm in the radial distribution network. This method is an extension of the Novel method for solving radial distribution networks with the emphasis on expanding from single phase to three-phase. The proposed method involves only simple algebraic computation without any form of Jacobian matrix but has a desirable convergence characteristic. Computationally, The suggested technique is very efficient and requires less computer memory storage and maintains high execution speed. Also, the submitted process can be easily programmed and be simply extended to different types of load characteristics. A simulation results applied to the IEEE 34 bus radial distribution feeder are examined by using the MATLAB.

  • PDF

증발기 내 이상유동의 균열 분배를 위한 헤더 형상의 최적화 (Optimum Header Design for the Uniform Distribution of Two Phase Flow in the Evaporator)

  • 최치웅;김무환;조남수;이장석;이장호
    • 대한기계학회논문집B
    • /
    • 제30권8호
    • /
    • pp.780-787
    • /
    • 2006
  • Several types of different header designs are numerically studied to have uniform distribution of two phase flow in the evaporator header having multi-channels. The different geometries include the inlet tube position into the header and the width of header. In the numerical calculation, two types of two-phase model such as homogeneous model and VOF(Volume Of Fluid) model are employed. In this study, the mal-distribution number, $M_d$, is newly defined to evaluate the averaged level of the flow distribution in the whole passes of the evaporator. As results, two phase flow in the header can be visualized using post-processing of numerical results. Furthermore, the optimum position of the inlet tube into the header and the width of header can be proposed for the better distribution of refrigerant(R-134a) flow.

Multi-objective Unbalanced Distribution Network Reconfiguration through Hybrid Heuristic Algorithm

  • Mahendran, G.;Sathiskumar, M.;Thiruvenkadam, S.;Lakshminarasimman, L.
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권2호
    • /
    • pp.215-222
    • /
    • 2013
  • Electrical power distribution systems are critical links between the utility and customer. In general, power distribution systems have unbalanced feeders due to the unbalanced loading. The devices that dependent on balanced three phase supply are affected by the unbalanced feeders. This necessitates the balancing of feeders. The main objective of reconfiguration is to balance the loads among the phases subject to constraints such as load flow equations, capacity and voltage constraints and to reduce the real power loss, while subject to a radial network structure in which all loads must be energized. Therefore, the distribution system reconfiguration problem has been viewed as multi-objective problem. In this paper, the hybrid heuristic algorithm has been used for reconfiguration, which is the combination of fuzzy and greedy algorithms. The purpose of the introduction of greedy is to refrain the searching for the period of phase balancing. The incorporation of fuzzy helps to take up more objectives amid phase balancing in the searching. The effectiveness of the proposed method is demonstrated through modified IEEE 33 bus and modified IEEE 125 bus radial distribution system.

내충격성 폴리스티렌의 형태구조 및 고무상 입도분포 해석 (Interpretation of Morphology and Rubber-Phase Particle Size Distribution of High Impact Polystyrene)

  • 정한균;정대원;안경현;이승종;이성재
    • 폴리머
    • /
    • 제25권5호
    • /
    • pp.744-753
    • /
    • 2001
  • 내충격성 폴리스티렌 (HIPS)의 내충격성에 영향을 주는 중요한 요소 중의 하나는 분산된 고무상 입자의 크기 및 입도분포이다. 본 연구에서는 반응조건이 HIPS의 고무상 입자 크기 및 입도분포에 미치는 영향을 관찰하기 위하여 HIPS를 중합 제조한 다음 고무함량, 교반속도 및 전중합 시간에 따른 고무상 입도분포 및 형태구조를 고찰하였다. 입도분석기로 분석한 결과, 톨루엔을 분산용매로 사용한 경우 열처리 온도가 낮을수록, 열처리 시간이 짧을수록 팽윤의 영향으로 고무상의 평균 입자경이 커졌지만, MEK의 경우에는 열처리 과정이 없어도 보다 합당한 입도분포를 얻을 수 있었다. 고무함량이 증가함에 따라 고무상의 평균 입자경은 뚜렷하게 커졌지만 고무함량이 적은 경우에는 교반속도가 증가하여도 평균 입자경은 그다지 큰 변화를 나타내지 않았다. 하지만 교반속도가 커짐에 따라 고무상 내의 폴리스티렌 포획입자는 크기가 균일해짐을 확인하였다. 또한 전중합시간에 따른 입도분포의 변화를 고찰한 결과 전중합 시간이 길어질수록 보다 작은 입도분포를 얻을수 있었다.

  • PDF

Inter-Phase Transformers를 이용한 고온 초전도 케이블의 층간 전류 등분배 방안 (Uniform Current Distribution among Conductor Layers in HTS Cables Using Inter-Phase Transformers)

  • 최용선;황시돌;현옥배;임성우;박인규
    • Progress in Superconductivity
    • /
    • 제5권2호
    • /
    • pp.144-148
    • /
    • 2004
  • Uniform current distribution among conductor layers in HTS cables using IPTs (inter-phase transformers) was investigated. Conventional methods for current distribution, in which resistors are inserted to conductor layers, causes additional loss. In contrast, IPTs, which use magnetic coupling, make it possible that the current in parallel circuits is distributed uniformly with any load, and minimize the loss. In this study, IPTs were designed and fabricated for examination of uniform current distribution in the conductor layers of HTS cables. The ITP was designed through calculation of its impedance that can cancel the inductance of the conduction layers. The experimental setup consisted of four IPTs and four inductors that simulate the conductor layer inductance. Each layer was designed to feed 10 A. We examined the behavior of current distribution with IPTs for various layer inductances.

  • PDF

APPROXIMATE ANALYSIS OF M/M/c RETRIAL QUEUE WITH SERVER VACATIONS

  • SHIN, YANG WOO;MOON, DUG HEE
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제19권4호
    • /
    • pp.443-457
    • /
    • 2015
  • We consider the M/M/c/c queues in which the customers blocked to enter the service facility retry after a random amount of time and some of idle servers can leave the vacation. The vacation time and retrial time are assumed to be of phase type distribution. Approximation formulae for the distribution of the number of customers in service facility and the mean number of customers in orbit are presented. We provide an approximation for M/M/c/c queue with general retrial time and general vacation time by approximating the general distribution with phase type distribution. Some numerical results are presented.

New Fault Location Algorithms by Direct Analysis of Three-Phase Circuit Using Matrix Inverse Lemma for Unbalanced Distribution Power Systems

  • Park, Myeon-Song;Lee, Seung-Jae
    • KIEE International Transactions on Power Engineering
    • /
    • 제3A권2호
    • /
    • pp.79-84
    • /
    • 2003
  • Unbalanced systems, such as distribution systems, have difficulties in fault locations due to single-phase laterals and loads. This paper proposes new fault locations developed by the direct three-phase circuit analysis algorithms using matrix inverse lemma for the line-to-ground fault case and the line-to-line fault case in unbalanced systems. The fault location for balanced systems has been studied using the current distribution factor, by a conventional symmetrical transformation, but that for unbalanced systems has not been investigated due to their high complexity. The proposed algorithms overcome the limit of the conventional algorithm using the conventional symmetrical transformation, which requires the balanced system and are applicable to any power system but are particularly useful for unbalanced distribution systems. Their effectiveness has been proven through many EMTP simulations.

상분리 모선의 자계 및 와전류 특성 해석 (Analysis of the Magnetic Field and Eddy Current Characteristics in Isolated Phase Bus System)

  • 김진수;하덕용;최승길;강형부
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권10호
    • /
    • pp.509-516
    • /
    • 2001
  • Isolated phase bus(IPS) has a special structure for carrying large current generated by a generator to a main transformer. In the analysis of IPB, the understanding of the magnetic field distribution generated by large current is important. Especially, while the bus conductor current is flowing, almost same amount of current as bus conductor current is induced in the enclosures under the influence of time varying magnetic field, and therefore the large electric loss and the deterioration of insulating capability might occur due to Joule heating effect. Hence for the optimal design of IPB satisfying the condition to minimize the loss, the accurate analysis of magnetic field distribution and the eddy current characteristics of three phase isolated phase bus have been investigated. In the analysis of time varying magnetic field, instead of finite difference method(FDM) which is generally used, finite element method with phasor concept is investigated under the assumption that the bus current is purely sinusoidal. The characteristics is studied along the phase angle by comparing the effect of eddy current on the magnetic field distribution with the case that eddy current is not considered, and also the effect of material, thickness and radius of enclosure on the eddy current distribution is discussed.

  • PDF

T형 수평 및 수직 입구 분지관 내 냉매 2상 유동 특성 (Two-phase Flow Characteristics of Refrigerant in T-branch with Horizontal and Vertical Inlet Tube)

  • 태상진;조금남
    • 설비공학논문집
    • /
    • 제14권9호
    • /
    • pp.741-748
    • /
    • 2002
  • The present study investigated the two-phase flow characteristics of refrigerant R-22 in T-branch with horizontal and vertical inlet tube The key experimental parameters were the orientation of inlet and branch tubes (horizontal and vertical), diameter ratio of branch tube to inlet tube (1 and 0.61), inlet mass flux (200~500 kg/$m^2$s) and inlet quality (0.1~0.4). Predicted pressure profile agreed with the measured data within 25.4%. The flow distribution ratio decreased as the mass flux increased. The flow distribution ratio decreased by 12~25% as the tube diameter ratio decreased from 1 to 0.61, and decreased by 38~47% as the orientation of branch changed from horizontal to vertical upward for horizontal inlet tubes. As the orientation of inlet tube changed from horizontal to vertical upward for horizontal branch, the flow distribution ratio increased by 15~68%, but the quality in the branch tube decreased by 28~92% due to phase separation.