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ABSTRACT. We consider the M/M/c/c queues in which the customers blocked to enter the
service facility retry after a random amount of time and some of idle servers can leave the
vacation. The vacation time and retrial time are assumed to be of phase type distribution.
Approximation formulae for the distribution of the number of customers in service facility
and the mean number of customers in orbit are presented. We provide an approximation for
M/M/c/c queue with general retrial time and general vacation time by approximating the
general distribution with phase type distribution. Some numerical results are presented.

1. INTRODUCTION

In the classicalM/M/c/c queueing system, it is assumed that the customers blocked to enter
the system are lost and servers are always available. However, in many practical situations the
blocked customers repeat their requests until the customers get into the service facility and the
servers may unavailable for a period of time due to a variety of reasons such as maintenance,
taking breaks and doing secondary job. For example, in call center with multiple agents that
answer the customer calls an arriving call joins the service facility if there is an available agent
or line. Otherwise, that is, if all the lines (buffer) are seized with other calls, the customer will
hang-up and retry to access the call center after random amount of time. Some of idle agents
may take a break or work secondary job like outbound calls. This type of call center with
multi-task agents can be modeled by the queueing system with retrials and vacations (RVQ).
Variety of queueing systems such as retrial queue and vacation queue has been introduced to
reduce the assumptions of classical model.
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Retrial queue is described by the feature that a customer enters the service facility if the
service facility is not full upon arrival, otherwise the customer joins the orbit and repeats its
request after random amount of time, called retrial time until the customer gets into the service
facility. Many efforts have been devoted to derive performance measures such as queue length
distribution, waiting times distribution, busy period distribution etc. in retrial queues. The
detailed overviews of the related references with retrial queues can be found in the monographs
[1, 2] and references therein.

Vacation queues reflect the situation that the servers may be temporary unavailable. The
time period that the servers do not provide their service is considered as the servers take a va-
cation and is called a vacation time. Vacation queue has been studied extensively for modeling
and analyzing the practical problems such as computer and communications systems, manu-
facturing systems and call centers with multitask employees. The detailed overview of single
server vacation queues can be found in the monograph [3] and for the multi-server vacation
queues, one can refer the recent monograph [4].

Retrial queues and vacation queues have been studied separately for last several decades.
Recently, the interests on the retrial queues with vacations is growing rapidly. However, almost
all the literature deals with the system with single-server and constant retrial policy that only
one customer in orbit can retry e.g., see [5, 6, 7, 8, 9]. The single server queue with Bernoulli
vacation schedule and linear retrial policy is considered in [10]. The call center with outgoing
calls and the call center with after-call work introduced in [11] can be considered as RVQ
with special vacation policy. An algorithmic solution for the MAP/M/c/K queue with PH-
vacation time and exponential retrial time is developed in [12].

The literature about the retrial queues with non-exponential retrial time is very limited. The
main difficulty for analyzing the system with non-exponential retrial times is due to the fact
that the model must keep track of the elapsed retrial time for each of possibly a very large
number of customers as stated in [1]. Recently, approximations for M/M/c/c retrial queue
and PH/PH/c retrial queue with PH-retrial time have been developed in [13, 14]. The
stability condition for MAP/PH/c/K queue with phase type distribution (PH) of vacation
time and PH-retrial time is given in [15].

In this paper, we consider the M/M/c/c queue with customer retrials and server vacations
in which the retrial times and vacation times are PH-distributions and develop an approximation
of the system. We also show the method can be applied to an approximation of the M/M/c/c
queue with general distributions of retrial time and vacation time by using the method in [14].

In Section 2, the mathematical model and stationary results are described. The approxima-
tion method is proposed in Section 3. Numerical results are given in Section 4. Application of
the method developed in Section 3 to the system with general vacation time and retrial time is
presented in Section 5. Conclusions are given in Section 6.

2. MODEL AND STATIONARY RESULTS

2.1. The model. Consider theM/M/c/c queue which consists of an orbit with infinite capac-
ity and a service facility with c identical servers in parallel and no waiting positions. Customers
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arrive from outside according to a Poisson process with rate λ. The service time distribution
of a customer is exponential with rate µ. We adopt the following vacation policy called (a, b)-
vacation policy [16]. If any a (1 ≤ a < c) or more servers are idle at a service completion, that
is, the number of customers at the service facility is less than or equal to a∗ = c−a upon a ser-
vice completion, then b (b ≤ a) servers among idle servers take a vacation and the remaining
b∗ = c−b servers are available. The vacation time distribution is assumed to be of a phase type
PH(δδδ,VVV ), where VVV = (vij) is a nonsingular w × w matrix with vii = −vi < 0, 1 ≤ i ≤ w
and δδδ = (δ1, · · · , δw) ≥ 0 with δδδe = 1 and e is the column vector of appropriate size whose
components are all 1. Let VVV 0 = −VVV e = (v01, · · · , v0w)T and mv = δδδ(−VVV )−1e be the mean
vacation time. We consider the single vacation policy under which the servers take only one
vacation and after the vacation the servers either serves the waiting customer in service facility
if any or stays idle.

If a customer finds that the number of customers in service facility is less than c upon ar-
rival, the customer enters the service facility, otherwise the customer joins to orbit and repeats
its request until the customer gets into the service facility. The customers in orbit retry inde-
pendently of other customers and retrial times of each customer are assumed to be independent
and identically distributed. We assume that the retrial time distribution of a customer in orbit
is of phase type PH(θθθ,UUU) whose distribution function is F (t) = 1 − θθθ exp(UUUt)e, t ≥ 0,
where θθθ = (θ1, · · · , θg) ≥ 0 with θθθe = 1 and UUU = (uij) is a nonsingular g × g matrix
with uii = −ui < 0, 1 ≤ i ≤ g. Let uuu = (u1, · · · , ug), γγγ = −UUUeee = (γ1, · · · , γg)T and
mr = θθθ(−UUU)−1e be the mean retrial time. We assume that U∗ = U + γγγθθθ is irreducible. For
detailed description of the PH-distribution and PH-renewal process, see [17, Chapter 2].

Let Xi(t) the number of customers in orbit whose service phase is of i, 1 ≤ i ≤ g and Y (t)
be the number of customers at service facility and J(t) be the server state at time t defined by

J(t) =

{
0, c servers are available
j, the phase of vacation time is of j, 1 ≤ j ≤ w.

Then ΨΨΨ = {(XXX(t), Y (t), J(t)), t ≥ 0} withXXX(t) = (X1(t), · · · , Xg(t)) is a continuous time
Markov chain on the state space

S = {(nnn, k, j) ∈ Zg+2
+ : nnn ≥ 0, 0 ≤ k ≤ c, 0 ≤ j ≤ w}

where Z+ = {0, 1, 2, · · · } and nnn = (n1, · · · , ng) ≥ 0 means ni ≥ 0, i = 1, 2, · · · , g.
In the following, denote the M/M/c/c queue with retrials and vacations in which the retrial

times and vacation times are PH-distributions by M/M/c/c RVQ with (Ret, Vac)=(PH, PH).
We assume that the stability condition ρ = λ

cµ < 1 for a > 1 and ρ < (c−1)µmv+1
cµmv+1 for a = 1,

see [15].

2.2. Stationary equations. Let (XXX,Y, J) be the stationary version of ΨΨΨ and P (nnn, k, j) =
P (XXX = nnn, Y = k, J = 0) = 0 for (nnn, k, j) ∈ S and P (nnn, k, j) = 0 for (nnn, k, j) /∈ S . Denote
the indicator function ofA by IA that is, IA = 1 ifA is true and IA = 0 otherwise. The balance
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equations for P (nnn, k, j) are as follows:

(λ+ µk +nnn · uuu)P (nnn, k, 0)

= λP (nnn, k − 1, 0) + λ

g∑
i=1

θiP (nnn− eeei, k, 0)I{k=c}

+

g∑
i=1

g∑
h=1,h̸=i

(ni + 1)uihP (nnn+ eeei − eeeh, k, 0) +

g∑
i=1

(ni + 1)γiP (nnn+ eeei, k − 1, 0)I{k≥1}

+

g∑
i=1

g∑
h=1,h̸=i

(ni + 1)γiθhP (nnn+ eeei − eeeh, k, 0)I{k=c} +

g∑
i=1

niγiθiP (nnn, k, 0)I{k=c}

+ µk+1P (nnn, k + 1, 0)I{a∗+1≤k≤c−1} +
w∑
j=1

v0jP (nnn, k, j), (2.1)

where µk = kµ and nnn · uuu =
∑g

i=1 niui is the inner product of two vectors nnn and uuu, and for
1 ≤ j ≤ w,

(λ+ µ∗k + vj +nnn · uuu)P (nnn, k, j)

= λP (nnn, k − 1, j) +

g∑
i=1

λθiP (nnn− eeei, k, j)I{k=c}

+

g∑
i=1

g∑
h=1,h ̸=i

(ni + 1)uihP (nnn+ eeei − eeeh, k, j) +

g∑
i=1

(ni + 1)γiP (nnn+ eeei, k − 1, j)I{k≥1}

+

g∑
i=1

g∑
h=1,h ̸=i

(ni + 1)γiθhP (nnn+ eeei − eeeh, k, j)I{k=c} +

g∑
i=1

niγiθiP (nnn, k, j)I{k=c}

+ µ∗k+1P (nnn, k + 1, j)I{0≤k≤c−1} + µk+1δjP (nnn, k + 1, 0)I{0≤k≤a∗}

+

w∑
h=1,h̸=j

P (nnn, k, h)vhj , (2.2)

where µ∗k = min(k, b∗)µ.
Let π(k, j) = P (Y = k, J = j), (k, j) ∈ Y = {(k, j) : 0 ≤ k ≤ c, 0 ≤ j ≤ w} and

γ(k, j) be retrial rate from orbit given that (Y, J) = (k, j), that is,

γ(k, j) =

g∑
i=1

γiLi(k, j), (k, j) ∈ Y,

where Li(k, j) = E[Xi|Y = k, J = j]. Summing over nnn ∈ Zg+ in (2.1) and (2.2), we have
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[
(λ+ γ(k, 0))I{k≤c−1} + µk

]
π(k, 0)

= (λ+ γ(k − 1, 0))π(k − 1, 0) + µk+1π(k + 1, 0)I{a∗+1≤k≤c−1}

+

w∑
h=1

v0hπ(k, h) (2.3)

and for j = 1, 2, · · · , w,[
(λ+ γ(k, j))I{k≤c−1} + µ∗k + vj

]
π(k, j)

= (λ+ γ(k − 1, j))π(k − 1, j) + µ∗k+1π(k + 1, j)I{0≤k≤c−1}

+µk+1δjπ(k + 1, 0)I{0≤k≤a∗} +
w∑

h=1,h̸=j

vhjπ(k, h). (2.4)

Equations (2.3) and (2.4) can be represented as πππQ = 0, where πππ = (π(k, j), (k, j) ∈ Y) and

Q =


B0 A0

C1 B1 A1

. . . . . . . . .
Cc−1 Bc−1 Ac−1

Cc Bc

 . (2.5)

The matrix Ak = Diag[λ + γ(k, j), j = 0, 1, · · · , w] is the diagonal matrix of size w + 1,
0 ≤ k ≤ c−1. The matrixBk is a square matrix of size w+1 whose (i, j)-componentBk(i, j)
is as follows: for 0 ≤ i, j ≤ w,

Bk(i, j) =


v0i , 1 ≤ i ≤ w, j = 0
vij , 1 ≤ i ̸= j ≤ w
−∆k(i), i = j
0, otherwise

where ∆k(i) is the positive number that makes Qe = 0 and the components not stated above
are all zero. The (i, j)-component of Ck, 1 ≤ k ≤ c is as follows:

Ck(i, j) =

 µkδj , 1 ≤ k ≤ a∗ + 1, i = 0, 1 ≤ j ≤ w
µk, a∗ + 2 ≤ k ≤ c, i = j = 0
µ∗k, 1 ≤ i = j ≤ w

and the components not stated above are all zero. The stationary distribution πππ = (πππ(k), 0 ≤
k ≤ c) with πππ(k) = (π(k, 0), π(k, 1), · · · , π(k,w)) of Q can be computed as

πππ(n) = π(0)R1 · · ·Rn, n = 1, 2, · · · ,K,
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where πππ(0) is the unique solution of the equations πππ(0)(B0 +R1C1) = 0 and

πππ(0)

(
e+

c∑
n=1

R1 · · ·Rne

)
= 1,

and the matrices Rn of size w + 1 are given recursively as

Rc = Ac−1(−Bc)−1,

Rn = An−1[−(Bn +Rn+1Cn+1)]
−1, n = c− 1, c− 2, · · · , 1.

Lemma 2.1. The marginal distributions Pi(n) = P (Xi = n), Pi(n, c) = P (Xi = n, Y = c)
and Pi(n, k, j) = P (Xi = n, Y = k, J = j), 1 ≤ i ≤ g satisfy the following relation :

(n+ 1)uiPi(n+ 1)− (n+ 1)γiθiPi(n+ 1, c)

= λθiPi(n, c) +

g∑
j=1,j ̸=i

ujiE[XjI{Xi=n}] +

g∑
j=1,j ̸=i

γjθiE[XjI{Xi=n,Y=c}], n ≥ 0.(2.6)

Proof. Let P (nnn) = P (XXX = nnn) and P (nnn, c) = P (XXX = nnn, Y = c). Summing over k =
0, 1, · · · , c and j = 0, 1, · · · , w in (2.1) and (2.2), we have

(nnn · uuu)P (nnn) + λP (nnn, c)− λ

g∑
i=1

θiP (nnn− eeei, c)

=

g∑
i=1

g∑
h=1,h ̸=i

(ni + 1)uihP (nnn+ eeei − eeeh)

+

g∑
i=1

(ni + 1)γiP (nnn+ eeei)−
g∑
i=1

(ni + 1)γiP (nnn+ eeei, c)

+

g∑
i=1

g∑
h=1,h ̸=i

(ni + 1)γiθhP (nnn+ eeei − eeeh, c) +

g∑
i=1

niγiθiP (nnn, c). (2.7)

Summing over nj (j ̸= i) for each ni = n in (2.7), we have after tedious algebra that

(n+ 1)uiPi(n+ 1)− nuiPi(n)− λθi(Pi(n, c)− Pi(n− 1, c))

= γiθi((n+ 1)Pi(n+ 1, c)− nPi(n, c)) +
∑

j=1,j ̸=i
uji(E[XjI{Xi=n}]− E[XjI{Xi=n−1}])

+
∑

j=1,j ̸=i
γjθi(E[XjI{Xi=n,Y=c}]− E[XjI{Xi=n−1,Y=c}]), n ≥ 0. (2.8)

Equation (2.6) is immediate from (2.8). �

Note that (2.6) is the local balance equations for Xi. Indeed, the left hand side of (2.6) is
the rate at which Xi enters state n from n + 1 and the right hand side of (2.6) is the rate at
which Xi enters state n+ 1 from n.
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Proposition 2.2. Let Li = E[Xi] and LLL = (L1, · · · , Lg). Then

LLL = Λθθθ(−UUU)−1, (2.9)

L =

g∑
i=1

Li = Λmr, (2.10)

where

Λ = λP (Y = c) +

g∑
i=1

γiE[XiI{Y=c}], (2.11)

is the total arrival rate to orbit.

Proof. Summing over n in (2.6) yields

uiLi =

g∑
j=1,j ̸=i

ujiLj + θiΛ, 1 ≤ i ≤ ν

and hence LLL(−UUU) = Λθθθ and (2.10) is immediate from (2.9) and θθθ(−UUU)−1e = mr. �
Note from (2.9) and θθθ(−UUU)−1γγγ = 1 that

∑g
i=1 γiLi = Λ. The proportion R(k, j) of

returning customers from orbit who find the arrival phase and service facility in state (k, j) is
given by (see [1, 2, 18])

R(k, j) =

∑g
i=1 γiE[XiI{Y=k,J=j}]∑g

i=1 γiLi

=
1

Λ
γ(k, j)π(k, j), (k, j) ∈ Y. (2.12)

It can be seen from (2.12) and (2.11) that the blocking probability RB =
∑w

j=0R(c, j) of a
returning customer is given by

RB =
1

Λ

g∑
i=1

γiE[XiI{Y=c}] = 1− λ

Λ
P (Y = c). (2.13)

Once R(k, j) is given, it follows from (2.10) and (2.13) that

L =
λPB

1−RB
mr, (2.14)

where PB = P (Y = c).

3. APPROXIMATIONS

As noted in Section 2,Q is represented in terms of γ(k, j) that is closely related withR(k, j).
In this section, we present an approximation formula forR(k, j) and then propose an algorithm
for computing πππ. We adopt the following approximation assumption about the behavior of
service facility based on the observation that Q is the generator of the M/M/c/c vacation
queue with state dependent arrival rates.
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Assumption A. The service facility behaves like a level dependent quasi-birth-and-death
process with generator Q and is independent of the retrials.

Let ξξξ = {ξ(t), t ≥ 0} be the Markov chain with generator Q. We approximate R(k, j)
with the conditional probability that given a customer joins orbit at time 0, the customer finds
that ξξξ is in state (k, j) at the retrial instant. That is, R(k, j) is approximated by

R(k, j) ≈
∫ ∞

0
P (ξ(t) = (k, j) | a customer joins orbit at time t = 0) dF (t)

=
1

Λ

w∑
i=0

(λ+ γ(c, i))π(c, i)

[∫ ∞

0
eQt θθθeUUUtγγγdt

]
(c,i),(k,j)

, (3.1)

where

QU =

∫ ∞

0
eQt θθθeUUUtγγγdt

and [·]z,z′ is the (z, z′)-component of the matrix [·].
Once initial value of γ(k, j) is given, ΛR(k, j) is can be approximated by (3.1) using the

stationary distribution πππ and γ(k, j) is updated from ΛR(k, j) by the formula (2.12). The
following algorithm summarizes the results above. We write Q as Q(γ) to highlight the depen-
dence of γ.

Algorithm for computing Q
1. Initialization. Let γ(0)(k, j) = 0 and compute the stationary distribution πππ(0) of Q(0).
2. (Repeating procedure) Repeat the following steps until a stopping criterion is satisfied.

For n = 1, 2, · · · ,
(1) Set

Λ
(n)
j = (λ+ γ(n−1)(c, j))π(n−1)(c, j), j = 0, 1, · · · , w

and compute ΛR(n)(k, j) using (3.1). That is,

ΛR(n)(k, j) =

w∑
i=0

Λ
(n)
i [Q

(n−1)
U ](c,i),(k,j).

(2) Calculate

γ(n)(k, j) =
ΛR(n)(k, j)

π(n−1)(k, j)

and update Q(n) = Q(γ(n)(k, j)) and compute the stationary distribution πππ(n) of
Q(n).

(3) Check the stopping criterion. Let

TOL = max
(k,j)∈Y

|γ(n)(k, j)− γ(n−1)(k, j)|.

If TOL < ϵ for a given tolerance ϵ > 0, then stop the iteration. Otherwise,
continue iteration.
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Remarks. 1. Computing procedure can be interpreted as follows. Setting γ(0)(k, j) = 0

denotes that the retrial phenomena is ignored and Q(0) is the generator of M/M/c/c vacation
queue. Since γ(n)(k, j) =

∑g
i=1 γiL

(n−1)
i (k, j) is the arrival rate from the group of blocking

customers in the system Q(n−1), the system Q(n) is the M/M/c/c vacation queue with extra
arrivals with rates γ(n)(k, j) that depend on the system state. Although the convergence of
the iteration scheme for γ(n)(k, j) is not proved analytically, extensive numerical experiments
show the convergence of the sequence {γ(n)}∞n=0.

2. The integration in (3.1) can be computed using the method in [13]. Here we briefly sketch
the method. Note that the LST F̃ (ω) = θθθ(ωI −UUU)−1γγγ of the retrial time distribution F (t) is a
rational function and the probability density function f(t) of F (t) can be expressed by a linear
combination of the function of the form tne−ηt [19, Appendix E]. It can be easily seen that

H(n, η) =

∫ ∞

0
exp[Qt]tne−ηt dt = n![(ηI −Q)−1]n+1, n = 0, 1, · · · .

Thus R(k, j) is the linear combination of H(n, η). Using the algorithm in [20], one can calcu-
late the inversion (ηI −Q)−1 by computing inversions of the matrices of size w + 1.

3. The complexity of the algorithm for computing Q method is as follows. The most time
consuming parts in the algorithm are to compute π(n) and QU . In one iteration, we need to
invert cmatrices of sizew+1. Thus the time complexity of one iteration becomesO((w+1)3).
The number of iterations needed is difficult to predict because it depends on the tolerance ϵ and
the system parameters such as mean retrial time mr and traffic intensity ρ. We could see from
numerical experiments that the iteration increases as mr or ρ increases. For example, the algo-
rithm was run on a laptop computer at 1.20 GHz with 2.96 GB RAM using the Mathematicar6
and the command TimeUsed is used to capture the CPU time [21] for M/M/10/10 queue
with w = 2 and g = 4, mr = 1.0. The run times and the number of iterations are 1.95 seconds
with 12 iterations for ρ = 0.4 and 3.91 second with 38 iterations for ρ = 0.8 when ϵ = 10−5

is used.

4. NUMERICAL EXAMPLES AND REFINEMENT

In this section, some numerical results are presented for the accuracy check of approxima-
tions. The blocking probability PB = P (Y = c), the probability PV = 1 − P (J = 0) that
the servers are in vacation, the mean E[Y ] and standard deviation SD[Y ] of the number of
customers in service facility and the mean number of customers in orbit L =

∑g
i=1 E[Xi] are

considered.
Throughout this section, we consider theM/M/c/c queue with service rate µ = 1.0 and the

mean of vacation time is mv = 1.5. The arrival rate λ is determined by the formula ρ = λ
cµ ,

that is, λ = cρµ given traffic intensity ρ. In the numerical tables, denote the vacation time and
retrial time by Vac and Ret, respectively.

In Table 1, approximation results (App) for PB and PV are compared with the exact results
(Exact) for the system with exponential (EXP) vacation time and exponential retrial time with
mean mr = 0.1, 1.0, 10.0. For the number c of servers and the parameters (a, b) for vacation
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TABLE 1. PB , PV , E[Y ] and SD[Y ] with (Vac,Ret)=(EXP,EXP)

(c, a, b) = (5, 5, 3) (c, a, b) = (10, 7, 5)
ρ mr Exact App (Err(%)) Exact App (Err(%))

PB 0.4 0.1 0.0763 0.0763 (0.06) 0.0216 0.0215 (0.53)
1.0 0.0634 0.0622 (1.92) 0.0160 0.0157 (2.11)

10.0 0.0573 0.0570 (0.46) 0.0138 0.0136 (0.37)
0.8 0.1 0.5465 0.5154 (5.70) 0.4270 0.3896 (8.75)

1.0 0.4732 0.4470 (5.53) 0.3244 0.2975 (8.30)
10.0 0.4384 0.4342 (0.96) 0.2836 0.2798 (1.35)

PV 0.4 0.1 0.2703 0.2700 (0.12) 0.6305 0.6303 (0.03)
1.0 0.2669 0.2664 (0.18) 0.6294 0.6294 (0.00)

10.0 0.2657 0.2656 (0.00) 0.6302 0.6303 (0.02)
0.8 0.1 0.0523 0.0467 (10.9) 0.1315 0.1217 (7.42)

1.0 0.0374 0.0305 (18.6) 0.1036 0.0915 (11.7)
10.0 0.0282 0.0269 (4.33) 0.0856 0.0834 (2.59)

E[Y ] 0.4 0.1 2.104 2.108 (0.18) 4.230 4.234 (0.09)
1.0 2.101 2.102 (0.05) 4.224 4.225 (0.02)

10.0 2.103 2.104 (0.01) 4.224 4.224 (0.00)
0.8 0.1 4.063 4.062 (0.01) 8.280 8.287 (0.08)

1.0 4.049 4.046 (0.08) 8.230 8.225 (0.06)
10.0 4.046 4.046 (0.01) 8.225 8.225 (0.00)

SD[Y ] 0.4 0.1 1.427 1.428 (0.05) 2.185 2.187 (0.12)
1.0 1.395 1.391 (0.32) 2.155 2.152 (0.14)

10.0 1.371 1.370 (0.11) 2.131 2.129 (0.05)
0.8 0.1 1.266 1.217 (3.88) 2.031 1.958 (3.63)

1.0 1.147 1.092 (4.79) 1.830 1.742 (4.82)
10.0 1.071 1.061 (0.90) 1.690 1.673 (0.99)

policy, two cases (c, a, b) = (5, 5, 3) and (10, 7, 5) are presented. Exact results for exponential
retrial times are obtained by using the algorithm in Shin (2014a). The relative percentage errors
Err(%) of approximations are given by Err(%) = |App − Exact| × 100/Exact. We can see
from Table 1 that the relative percentage error Err(%) for PB is not sufficiently small for the
case of ρ = 0.8, mr = 0.1, 1.0 and (c, a, b) = (10, 7, 5). The maximal absolute error is 0.0373
for ρ = 0.8, mr = 0.1 and (c, a, b) = (10, 7, 5) and others seems to be small enough for
practical sense. The approximation for PV works well especially for ρ = 0.4. The relative
percentage error Err(%) does not seem to be sufficiently small for ρ = 0.8 and small mr.
However the values of PV for ρ = 0.8 are small and the maximal absolute error is 0.0121 for
ρ = 0.8, mr = 1.0 and (c, a, b) = (10, 7, 5) which do not seem particularly meaningful as
a measure of the practical accuracy of an approximation. Similar comparisons for E[Y ] and
SD[Y ] are given in Table 1 from which we see that E[Y ] is less sensitive with respect to the
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TABLE 2. L with (Vac,Ret)=(EXP,EXP)

(c, a, b) = (5, 5, 3) (c, a, b) = (10, 7, 5)
ρ mr Exact App (Err(%)) Exact App (Err(%))

0.4 0.1 0.092 0.098 (5.87) 0.039 0.043 (10.4)
1.0 0.201 0.214 (6.76) 0.088 0.098 (10.6)

10.0 1.272 1.291 (1.44) 0.578 0.591 (2.19)
20.0 2.466 2.485 (0.76) 1.123 1.136 (1.15)

0.8 0.1 2.857 3.022 (5.79) 2.851 3.080 (8.03)
1.0 5.602 5.788 (3.32) 5.428 5.855 (7.86)

10.0 33.035 33.232 (0.59) 32.919 33.511 (1.80)
20.0 63.550 63.748 (0.31) 63.681 64.290 (0.96)

mean retrial time mr than other performance measures such as PB and the approximations for
E[Y ] and SD[Y ] works well. One can also see that the relative errors for (c, a, b) = (10, 7, 5)
are greater than those for (c, a, b) = (5, 5, 3).

Denote by L(mr) and LApp(mr) the exact and approximation of L as a function of mr.
In many numerical experiments, the approximation of L does not provide satisfactory accu-
racy for small value of mr. However, L increases rapidly and the the differences Err(mr) =

L(mr)− LApp(mr) varies slowly as mr increases. We adopt the modified formula L̂(mr) for
approximation of L(mr) in [13] as

L̂(mr) = LApp(mr) + (LV − LAppr(m
∗
r)), (4.1)

where LV is the mean number of customers waiting in the queue for the system with mr = 0.0
that is the ordinary M/M/c vacation queue and m∗

r is chosen to be small enough so that the
variation of LApp(mr) is negligible for mr ≤ m∗

r . In the numerical tables of this paper, L̂ with
m∗
r = 10−3 are presented for the approximation of L. Numerical results for the approximation

of L in Table 2 show that L̂ provides good approximation especially for large mr and all the
absolute error |App− Exact| are less than 1.0.

Approximations (App) for the system with PH-vacation time, PH-retrial times and (c, a, b) =
(10, 7, 5) are compared with simulations (Sim) in Tables 3-4. Let C2

v and C2
r be the squared

coefficients of variation (SCV) of vacation time and retrial time, respectively. For numeri-
cal examples, we consider the Erlang distribution of order two (E2) for SCV = 0.5 and the
hyperexponential distribution of order two (H2) for SCV = 2.0. The probability density
function of H2 distribution used in tables is f(t) = pµ1e

−µ1t + (1− p)µ2e
−µ2t, t ≥ 0, where

the parameters p, µ1 and µ2 are determined by the mean m and SCV of the distribution as
p = 1

2(1 +
√

(SCV − 1)/(SCV + 1)), µ1 = 2p
m , µ2 = 2(1−p)

m . Simulation models for the
system with E2 and H2 retrial times are developed with ARENA [22]. Simulation run time is
set to 110,000 unit times including 10,000 unit times of warm-up period, where the expected
value of service time is one unit time. Ten replications are conducted for each case and the
average value and the half length of 95% confidence interval (c.i.) are obtained.



454 Y. W. SHIN AND D. H. MOON

TABLE 3. PB and PV with (Vac, Ret)=(PH, PH) and (c, a, b) = (10, 7, 5)

PB PV
(Vac, Ret) ρ mr App Sim (c.i.) App Sim (c.i.)
(E2,H2) 0.4 0.1 0.0170 0.0175 (±0.0003) 0.6224 0.6216 (±0.0015)

1.0 0.0132 0.0138 (±0.0003) 0.6217 0.6218 (±0.0016)
10.0 0.0117 0.0120 (±0.0002) 0.6223 0.6214 (±0.0013)

0.8 0.1 0.3733 0.4103 (±0.0013) 0.1167 0.1264 (±0.0009)
1.0 0.2948 0.3192 (±0.0010) 0.0909 0.1014 (±0.0010)

10.0 0.2755 0.2790 (±0.0010) 0.0818 0.0839 (±0.0009)
(H2, E2) 0.4 0.1 0.0280 0.0281 (±0.0006) 0.6370 0.6363 (±0.0018)

1.0 0.0188 0.0200 (±0.0004) 0.6357 0.6358 (±0.0013)
10.0 0.0156 0.0158 (±0.0003) 0.6367 0.6363 (±0.0016)

0.8 0.1 0.4094 0.4468 (±0.0023) 0.1268 0.1363 (±0.0013)
1.0 0.2986 0.3321 (±0.0010) 0.0909 0.1063 (±0.0013)

10.0 0.2809 0.2848 (±0.0013) 0.0835 0.0859 (±0.0009)

TABLE 4. L with (Vac, Ret)=(PH, PH) and (c, a, b) = (10, 7, 5)

ρ = 0.4 ρ = 0.8
(Vac,Ret) mr App Sim (c.i.) App Sim (c.i.)
(E2,H2) 0.1 0.031 0.030 (±0.003) 2.807 2.807 (±0.021)

1.0 0.080 0.077 (±0.017) 5.681 5.681 (±0.026)
10.0 0.502 0.501 (±0.008) 32.736 32.736 (±0.199)

(H2, E2) 0.1 0.067 0.061 (±0.003) 3.766 3.564 (±0.069)
1.0 0.124 0.111 (±0.004) 6.189 5.725 (±0.048)

10.0 0.669 0.651 (±0.001) 33.769 32.776 (±0.251)

It can be seen from Table 3 that the absolute values of deviation Dev = |App − Sim| for
PB are all less than 0.01 except for the case ρ = 0.8 and mr = 0.1, 1.0. The values of Dev
are in (0.037, 0.038) for mr = 0.1 and (0.024, 0.033) for mr = 0.1. Table 3 also show that
Dev for PV are all less than 0.01 except for the case ρ = 0.8. The maximal value of Dev for
PV is 0.0154 for the case ρ = 0.8 and mr = 1.0 in the system with (Vac,Ret)=(H2, E2). It
can be seen from Table 4 for L that Dev is less than 1.0 for all cases. Overall the accuracy
of approximations in the system with the combinations of E2 and H2 distributions of vacation
times and retrial times is of the similar order of magnitude as that in the case of exponential
distributions of vacation time and retrial time.
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5. APPROXIMATION OF THE SYSTEM WITH GENERAL DISTRIBUTIONS OF VACATION TIME
AND RETRIAL TIME

In this section, we show that the method developed in the previous section can be applied
to the system with general distributions of vacation time and retrial time by an example, the
system with Weibul distribution (WEIB) of vacation time and lognormal distribution (LN) of
retrial time. We fit the first three moments of Weibul distribution and lognormal distribution
with PH-distributions and approximate the system with WEIB-vacation time and LN-retrial
time by the system with PH-vacation time and PH-retrial time.

Let mk, k = 1, 2, 3 be the kth moment of a positive random variable. If mk, k = 1, 2, 3
satisfy that m2 > 2m2

1 and m1m3 > 1.5m2
2, then the probability density function f(t) =

pµ1e
−µ1t + (1− p)µ2e

−µ2t, t ≥ 0 of the hyperexponential distribution H2(p;µ1, µ2) with the
preassigned moments mi, i = 1, 2, 3 is determined by the parameters, see [19, 23],

µ1 =
1

2

(
a1 +

√
a21 − 4a2

)
, µ2 =

1

2

(
a1 −

√
a21 − 4a2

)
, p =

µ1(1− µ2m1)

µ1 − µ2
, (5.1)

where

a2 =
6m2

1 − 3m2

1.5m2
2 −m1m3

, a1 =
1

m1

(
1 +

1

2
m2a2

)
.

The parameters of H2(p; t1/m, t2/m) for fitting the first three moments of lognormal dis-
tribution with mean m and SCV = 2.0 are given by p = 0.9714045207910316, t1 =
1.1380711874576983 and t2 = 0.19526214587563495 and the parameters for the Weibul dis-
tribution with meanm and SCV = 2.0 are p = 0.6587280978333091, t1 = 2.0364867918542
and t2 = 0.5044393653326359.

Coxian distribution with Erlang node denoted by CEk,j(p;µ1, µ2) is the composition of the
mixture of two Erlang distributions of order k and j whose Laplace transform f∗(s) of the
probability density function is given by

f∗(s) = p

(
µ1

µ1 + s

)k ( µ2
µ2 + s

)j
+ (1− p)

(
µ2

µ2 + s

)j
, s ≥ 0.

If the nth moment of CEk,j(p;µ1, µ2) is mn, then the nth moment of CEk,j(p;
µ1
a ,

µ2
a ) is

anmn. Following the method in [24], we fit the first three moments of LN with m and SCV =
0.5 with CE1,3(p ; t1/m, t2/m) whose phase type representation PH(ααα, T ) is given by ααα =
(p, 1− p, 0, 0) with p = 0.1167466452506409 and

T =
1

m


−t1 t1 0 0
0 −t2 t2 0
0 0 −t2 t2
0 0 0 −t2

 ,

where t1 = 0.9501281621, t2 = 3.4202636232. The first three moments of WEIB with mv

and C2
v = 0.5 is fitted by CE2,1(0.751282; 2.88098/mv, 2.09007/mv).

In Tables 5-6, the approximation results for PB , PV and L in the system with PH-vacation
time and PH-retrial time are compared with the simulations of the system with WEIB-vacation
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TABLE 5. PB and PV with (Vac, Ret)=(WEIB, LN) and (c, a, b) = (10, 7, 5)

PB PV
(C2

v , C
2
r ) ρ mr App Sim (c.i.) App Sim (c.i.)

(0.5, 2.0) 0.4 0.1 0.0171 0.0176 (±0.0003) 0.6233 0.6228 (±0.0017)
1.0 0.0131 0.0138 (±0.0003) 0.6225 0.6215 (±0.0012)

10.0 0.0118 0.0118 (±0.0003) 0.6233 0.6226 (±0.0012)
0.8 0.1 0.3755 0.4133 (±0.0017) 0.1184 0.1271 (±0.0007)

1.0 0.2927 0.3192 (±0.0012) 0.0904 0.1020 (±0.0012)
10.0 0.2759 0.2777 (±0.0011) 0.0820 0.0834 (±0.0007)

(2.0, 0.5) 0.4 0.1 0.0289 0.0291 (±0.0006) 0.6385 0.6397 (±0.0017)
1.0 0.0192 0.0202 (±0.0004) 0.6371 0.6387 (±0.0011)

10.0 0.0159 0.0163 (±0.0003) 0.6383 0.6394 (±0.0016)
0.8 0.1 0.4153 0.4536 (±0.0016) 0.1281 0.1394 (±0.0011)

1.0 0.2982 0.3344 (±0.0010) 0.0908 0.1083 (±0.0013)
10.0 0.2815 0.2878 (±0.0016) 0.0838 0.0877 (±0.0013)

TABLE 6. L with (Vac, Ret)=(WEIB, LN) and (c, a, b) = (10, 7, 5)

ρ = 0.4 ρ = 0.8
(C2

v , C
2
r ) mr App Sim (c.i.) App Sim (c.i.)

(0.5, 2.0) 0.1 0.030 0.029 (±0.001) 2.772 2.540 (±0.026)
1.0 0.077 0.073 (±0.002) 5.554 5.177 (±0.040)

10.0 0.500 0.491 (±0.016) 32.691 31.622 (±0.217)
(2.0, 0.5) 0.1 0.067 0.061 (±0.003) 3.756 3.545 (±0.073)

1.0 0.125 0.111 (±0.003) 6.123 5.689 (±0.060)
10.0 0.680 0.667 (±0.015) 33.821 33.260 (±0.308)

time and LN-retrial time. It can be seen from the tables that the approximation works similarly
to the case of the system with PH-vacation time and PH-retrial time investigated in Section 4.

6. CONCLUSIONS

Approximation method for some performance measures in M/M/c/c queue with server
vacations and customer retrials in which the vacation time and retrial time are of phase type
distributions has been presented. A sufficient condition for the system to be positive recurrent
is presented. We showed that the approach can be applied to the system with general distribu-
tions of vacation time and retrial time by fitting the general distribution with PH-distribution.
Accuracy of the approximations has been numerically investigated by comparing them with
exact results and simulation. The numerical examples show that the accuracy of approximation
is good in practical sense and tends to improve as the mean retrial time mr increases. The
approximate method has used vacation queue with finite capacity state dependent arrival rate
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and it is required to invert the matrix of size w + 1 for numerical implementation. Thus the
method can be applied to RVQ with many servers. Furthermore, the approach has potential
applications to the RVQ with various vacation policies and more complex arrival process.
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