• Title/Summary/Keyword: Phase Control Method

Search Result 2,507, Processing Time 0.057 seconds

A New Control Method of Series Single-Phase Hybrid Active Power Filter (직렬형 단상 하이브리드 능동 전력필터의 새로운 제어법)

  • Kim, Jin-Sun;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.149-151
    • /
    • 2005
  • This paper deals with the novel control algorithm of single-phase hybrid active power filter for the compensation of harmonic current components in nonlinear R-L load with passive active power filters. To construct two-axes coordinate, an imaginary second phase was made by giving time delay to line current. In this proposed method, the new signal, which was the delayed through the filtering by the phase-delay property of low-pass filter, is used as the secondary phase. Because two phases have different phase, instantaneous calculation of harmonic current is possible. In this paper, a reference voltage is created by multiplying gain of filter by compensation current using the rotating reference frames that synchronizes with source-frequency, not applying to instantaneous reactive power theory which has been used with the existing fixed reference frames. This paper shows the experimental results, which provide a high accuracy and extremely fast response of single-phase hybrid active Bower filter under the operation with the proposed control method.

  • PDF

Torque Density Improvement of Five-Phase PMSM Drive for Electric Vehicles Applications

  • Zhao, Pinzhi;Yang, Guijie
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.401-407
    • /
    • 2011
  • In order to enhance torque density of five-phase permanent magnetic synchronous motor with third harmonic injection for electric vehicles (EVs) applications, optimum seeking method for injection ratio of third harmonic was proposed adopting theoretical derivation and finite element analysis method, under the constraint of same amplitude for current and air-gap flux. By five-dimension space vector decomposition, the mathematic model in two orthogonal space plane, $d_1-q_1$ and $d_3-q_3$, was deduced. And the corresponding dual-plane vector control method was accomplished to independently control fundamental and third harmonic currents in each vector plane. A five-phase PMSM prototype with quasi-trapezoidal flux pattern and its fivephase voltage source inverter were designed. Also, the dual-plane vector control was digitized in a single XC3S1200E FPGA. Simulation and experimental results prove that using the proposed optimum seeking method, the torque density of five-phase PMSM is enhanced by 20%, without any increase of power converter capacity, machine size and iron core saturation.

A Novel Interleaving Control Scheme for Boost Converters Operating in Critical Conduction Mode

  • Yang, Xu;Ying, Yanping;Chen, Wenjie
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.132-137
    • /
    • 2010
  • Interleaving techniques are widely used to reduce input/output ripples and to increase the power capacity of boost converters operating in critical conduction mode. Two types of phase-shift control schemes are studied in this paper, the turn-on time shifting method and the turn-off time shifting method. It is found that although the turn-off time shifting method exhibits better performance, it suffers from sub-harmonic oscillations at high input voltages. To solve this problem, an intensive quantitative analysis of the sub-harmonic oscillation phenomenon is made in this paper. Based upon that, a novel modified turn off time shifting control scheme for interleaved boost converters operating in critical conduction mode is proposed. An important advantage of this scheme is that both the master phase and the slave phase can operate stably in critical conduction mode without any oscillations in the full input voltage range. This method is implemented with a FPGA based digital PWM control platform, and tests were carried out on a two-phase interleaved boost PFC converter prototype. Experimental results demonstrated the feasibility and performance of the proposed phase-shift control scheme.

Current Control of Three-Phase PWM Rectifiers without Phase Current Sensors (상전류 센서없는 3상 PWM 정류기의 전류제어)

  • 임대식;김해준;이동춘
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.307-310
    • /
    • 1999
  • This paper proposes a novel current control method of three-phase PWM rectifiers without phase current sensors. The features of this method are to reconstruct phase currents by using switching pattern of space vector modulation and to estimate phase currents by a predictive state observer for practical applications. Simulation results show that the performance of the proposed system is nearly the same as that of sensor-based system.

  • PDF

A Control Algorithm of Single Phase Active Power Filter based on Rotating Reference Frame (회전좌표계를 이용한 단상능동전력필터의 제어이론)

  • Kim, Jin-Sun;Kim, Young-Seok;Shin, Jae-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1480-1482
    • /
    • 2005
  • The major causes of power quality deterioration are harmonic current through semiconductor switching device, due to use of nonlinear loads such as diodes rectifier or thyristor rectifiers. In response to this concerns, this paper presents a new control method of single-phase active power filter(APF) for the compensation of harmonic current components in nonlinear loads. In order to make the complex calculation to be possible, the single-phase system that has two phases was made by constructing a imaginary second-phase giving time delay to load currents. In the conventional method, a imaginary-phase lagged to the load current T/4(here T is the fundamental cycle) was made. But in this proposed method, the new signal, which has the delayed phase through the filter, using the phase-delay property of low-pass filter, was used as the second phase. As this control method is applied to the system of single phase, an instantaneous calculation was done rather by using the rotating reference frames that synchronizes with source-frequency than by applying instantaneous reactive power theory that uses the conventional fixed reference frames.

  • PDF

An Improved Current Control Method for Three-Phase PWM Inverters Using Three-Level Comparator (3레벨 비교기를 이용한 3상인버터의 개선된 히스테리시스 전류제어 기법)

  • Moon, Hyoung-Soo;Han, Woo-Yong;Lee, Chang-Goo;Sin, Dong-Yong;Kim, Mu-Youn
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1035-1037
    • /
    • 2001
  • This paper presents an improved hys- teresis current control method for three-phase PWM power inverters using 3-level comparator. Hysteresis current controller using 3-level comparator has an advantage of constant switching frequency compared with conventional hysteresis current controller. However, this method has disadvantage that the longer sampling period, the larger current error because the switching is performed without considering current error magnitude of each phase. The proposed method improves the control performance by selecting the optimum switching pattern in which the magnitudes of current errors are considered introducing space vector concept. Simulation results using Matlab/Simulink show that the proposed control method reduces current error keeping the merit of previous hysteresis current control method.

  • PDF

A Study on Control Scheme of 3-Phase Active Power Filter for Harmonic Elimination and Reactive Power Compensation (고조파 제거 및 무효전력 보상을 위한 3상 전력용 능동 필터의 제어에 관한 연구)

  • Park, Min-Ho;Choe, Gyu-Ha;Choe, Jae-Young
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.291-295
    • /
    • 1989
  • The conventional Optimized Injection Method is a good control technique but can't be applied to 3-phase a.e. line. In this paper, a new technique, Time-sharing Method based on basic principle of conventional Optimized Injection Method is introduced to hold the independence of each phase, and the structure of power circuit is improved to realize the new control method. By this scheme it is possible to simplify the control circuit and power circuit. The characteristic of the new control method are investigated and compared with conventional Optimized Injection Method by computer simulation.

  • PDF

Phase Shift Control for Series Active Voltage Quality Regulators

  • Xiao, Guochun;Teng, Guofei;Chen, Beihai;Zhang, Jixu
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.664-676
    • /
    • 2012
  • A phase shift algorithm based on the closed-loop control of dc-link voltage implemented on a series active voltage quality regulator (AVQR) is proposed in this paper. To avoid pumping-up the dc-link voltage, a general phase shift compensation strategy is applied. The relationships among the operation variables are discussed in detail, which is very important for guiding the design of both the main circuit and the control system. Then on the basis of an investigation of the dc-link voltage pumping-up from viewpoint of the active power flow, a novel phase shift control method based on the closed-loop of the dc-link voltage is proposed. This method can adjust the phase of the output voltage gradually and automatically according to the dc-link voltage variation without introducing a phase jump. The effectiveness of the proposed strategy is verified through simulations of a single-phase 5kVA prototype and laboratory experiments on both a single-phase 5kVA and a three-phase 15kVA prototype.

Leg-By-Leg-Based Finite-Control-Set Model Predictive Control for Two-Level Voltage-Source Inverters

  • Zhang, Tao;Chen, Xiyou;Qi, Chen;Lang, Zhengying
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1162-1170
    • /
    • 2019
  • Finite-control-set model predictive control (FCS-MPC) is a promising control scheme for two-level voltage-source inverters (TL-VSIs). However, two main issues arise in the classical FCS-MPC method: an exponentially-increasing computational time and a low steady-state performance. To solve these two issues, a novel FCS-MPC method has been proposed for n-phase TL-VSIs in this paper. The basic idea of the proposed method is to carry out the FCS-MPC scheme of TL-VSIs for one leg by one leg, like a "pipeline". Based on this idea, the calculations are reduced from exponential time to linear time and its current waveforms are improved by applying more switching states per sampling period. The cases of three-phase and five-phase TL-VSIs were tested to verify the effectiveness of proposed method.

Application of nonlinear control via output redefinition to missile autopilot (출력재정의를 통한 비선형제어 기법의 미사일 오토파일롯 응용)

  • 류진훈;탁민제
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1496-1499
    • /
    • 1996
  • A nonlinear tracking control technique developed for the control of nonlinear systems has been applied to the autopilot design of missile system. The difficulties in the application of inversion based control methods such as input-output feedback linearization and sliding mode control due to nonminimum phase characteristics are discussed. To avoid the stability problem associated with unstable zero dynamics, the input-output feedback linearization is applied with output-redefinition method to normal acceleration control. The output-redefinition method gives an indirect way to apply the nonlinear controls to nonminimum phase plants by redefining the plant output such that the tracking control of the modified output ensures the asymptotic tracking of the original output. The numerical simulation shows satisfactory results both for nominal and for slightly perturbed missile systems adopting the sliding mode control technique. However, the robustness problem in this method is briefly investigated and verified with the simulation.

  • PDF