• Title/Summary/Keyword: Phase Change Temperature

Search Result 1,238, Processing Time 0.031 seconds

Development of Thermoregulating Textile Materials with Microencapsulated Phase Change Materials(PCM) -Wearing comfort of the developed thermoregulating textile materials- (PCM 마이크로캡슐을 이용한 열조절 섬유소재 개발 -열조절 섬유소재의 착용효과-)

  • 신윤숙;정영옥;전향란;손경희;김성희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.6
    • /
    • pp.767-775
    • /
    • 2004
  • In order to evaluate physiological responses and comfort sensation of the developed thermoregulating textile material, polyester knit fabric was treated with phase change material (PCM) microcapsules by printing. Ten male subjects wearing an experimental best with and without PCMs were seated for 20 minutes, then exercised for 20 minutes, and then seated for 30 minutes in the chamber which was controlled under the temperatures of 20$\pm$1$^{\circ}C$, 50$\pm$5%R.H. The subject's skin temperature, microclimate inside garment and comfort sensation of two experimental bests were compared one another. As a result, the rectal temperature, skin temperature and mean skin temperature were similar in the two groups, and the subjects were not able to perceive the differences in comfort of the two experimental bests. However, the effect of PCM microcapsule could be seen from microclimate temperature and humidity. The microclimate temperature of the PCM garment at chest was significantly higher during exercise. The microclimate humidity of the PCM garment at chest was significantly lower during exercise and rest.

Structural change of cobalt dodecanesulfate (Cobalt dodecanesulfate의 구조변화)

  • 허영덕;권석순;김지현
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.2
    • /
    • pp.63-67
    • /
    • 2004
  • The layered structure of cobalt dodecanesulfate was synthesized. A phase transition takes place at various temperature ranges and results in a drastic change of the layer distance. A monolayer structure of cobalt dodecanesulfate at room temperature transformed to a bilayer structure as a dehydrated form at high temperature.

A Study on Thermo-Physical Properties of Microencapsulated Phase Change Material Slurry (마이크로캡슐 잠열 축열재 혼합수의 열물성에 관한 연구)

  • 임재근;최순열;김명준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.962-971
    • /
    • 2004
  • This paper has dealt with thermo-physical properties of microencapsulated phase change material slurry as a latent heat storage material having a low melting point. The measured results of the thermo-physical properties of the test microencapsulated phase change material slurry, those are, density, specific heat, thermal conductivity and viscosity, were discussed for the temperature region of solid and liquid phases of the dispersion material (paraffin). The measurements of these properties of microencapsulated phase change material slurry have been carried out by using a specific-gravity meter, a water calorimeter, a differential scanning calorimeter(DSC), a transient hot wire method and rotating type viscometer, respectively. It was clarified that the additional properties law could be applied to the estimation of the density and specific heat of microencapsulated phase change material slurry and also the Euckens equation could be applied to the estimation of the thermal conductivity of this slurry.

A Study on the Thermal, Electrical Characteristics of Ge-Se-Te Chalcogenide Material for Use in Phase Change Memory

  • Nam, Ki-Hyun;Chung, Hong-Bay
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.6
    • /
    • pp.223-226
    • /
    • 2008
  • $Ge_1Se_1Te_2$ chalcogenide amorphous materials was prepared by the conventional melt-quenching method. Samples were processed bye-beam evaporator systems and RF-sputtering systems. Phase change characteristics were analyzed by measuring glassification temperature, crystallization temperature and density of bulk material. The thermal characteristics were measured at the temperature between 300 K and 700 K, and the electrical characteristics were studied within the range from 0 V to 3 V. The obtained results agree with the electrothermal model for Phase-Change Random Access Memory.

Numerical Study of Defrost Phenomenon of Automobile Windshield (자동차 전방 유리면 성에 전산 해빙해석)

  • 박만성;황지은;박원규;장기룡
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.157-163
    • /
    • 2003
  • This work was undertaken for the numerical analysis of defrosting phenomena of automobile windshield. To analyze the defrost, the flow and temperature field of cabin interior, heat transfer through the windshield glass, and phase change of the frost should be analyzed simultaneously. The flow field was obtained by solving the 3-D unsteady Navier-Stokes equation and the temperature field was computed by energy equation. The phase-change process of Stefan problem was solved by enthalpy method. For code validation, the temperature field of the driven cavity was calculated. The result of calculation shows a good agreement with the other numerical results. Then, the present code was applied to the defrosting analysis of a real automobile and, also, a good agreement with experiment was obtained.

Combined Thermal Radiation with Turbulent Convection Conjugate PCM Model (난류 대류를 도입한 고온 축열 시스템 모델의 열복사 전달에 관한 연구)

  • Kim, K.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.4
    • /
    • pp.556-565
    • /
    • 1995
  • The physical model of interest is based upon the concentric cylinder, where the outside cylinder is filled with optically thick and high temperature phase change material(PCM). The fluid is flowing through the inside cylinder to transfer the appropriate energy. The fluid is flowing through the inside cylinder to transfer the appropriate energy. The governing equations for the phase change material including internal thermal radiation and for the turbulent transfer fluid have been employed and numerically solved. The optically thick phase change justifies the P-l spherical harmonics approximation, which is believed to be appropriate choice particularly for the much coupled problem like in this study. The solid/liquid interface, temperature distribution within the PCM and the heat flux from the PCM to the transfer fluid have been obtained and compared with those of laminar transfer fluid. The numerical results show that the turbulent transfer fluid accelerates the solid/liquid interface and results in the increase of heat transfer rate from the PCM. The internal thermal radiation within the PCM, however, does not always playa role to increase the heat transfer rate throughout the inside cylinder. It is believed that the combined heat flux has been picked up more in the inflowing area than in the pure conductive phase change material.

  • PDF

Thermal-flow Analysis of the Cooling System in the Medicated Water Electrolysis Apparatus (냉이온수기 냉각시스템에 관한 열유동 해석)

  • Jeon, Seong-Oh;Lee, Sang-Jun;Lee, Jong-Chul;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.3
    • /
    • pp.33-38
    • /
    • 2011
  • Medicated water electrolysis apparatus, which electrolyzes water into acidic water and alkaline water, was in the spotlight as becoming known the effect of alkaline water. It is known as good for health as removing active oxygen in the human's body and promoting digestion. But, the customers could not get that desired water temperature because these apparatuses are directly connected with a water pipe. So, the cooling system was developed for controlling the temperature of the alkaline water. One of the typical way is to store water in water tank and control the temperature. But, in this way, storing water can be polluted impurities coming from outside. For protecting this pollution, the cooling system based on indirect heat exchange method through phase change between water and ice was developed. In this study, we have calculated efficiency of the cooling system with phase change by experiment and commercial CFD(Computational Fluid Dynamics) code, ANSYS CFX. To consider the effect of latent heat that is generated by melting ice, we have simulated two phase numerical analyses used enthalpy method and found the temperature, velocity, and ice mass distribution for calculating the efficiency of cooling. From the results of numerical analysis, we have obtained the relationship between the cooling efficiency and each design factor.

A Study on Two Phase Heat Exchange of Plate Type PCM Container (판형 상변화 물질 용기의 2상 열교환 현상 연구)

  • Kim, S.H.;Cho, S.W.;Lee, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.4
    • /
    • pp.576-582
    • /
    • 1996
  • This work studies qualitative thermal characteristics of PCM cold storage medium container and its surrounding streams. Experimental parameters are initial PCM temperature and cold water flow rate. A mathematical modeling was establised to estimate temperature distribution and the cooling process. We found that the phase-change temperatures of PCM varies from 6 to $8^{\circ}C$ which is constant for other materials and that the dominant heat transfer resistance is that on the container side taking about 3/4 of the total resistance. The one dimensional mathematical model predicts experimental data quit well.

  • PDF

Microstructure and Phase Stability of $\beta$-Dicalcium Silicate ($\beta$형 Dicalcium Silicate 광물의 상 안정성 및 미세구조변화)

  • 박춘근
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.9
    • /
    • pp.957-962
    • /
    • 1997
  • Dicalcium silicate has many polymorphs according to temperature. $\beta$-dicalcium silicate which exists in cement is stabilized by minor components drived from raw materials regardless of temperature, such as high temperature and room temperature. K2O, SO3 and B2O3 are effective stabilizers for $\beta$-dicalcium silicate at room temperature. B2O3 was the most effective stabilizer. Transformation from $\beta$ to ${\gamma}$ phase causes dicalcium silicate to change volume, resulting in dusting phenomenon. When B2O3 was used the phase transformation is the least than any other stabilizers. In addition, the starting temperature of quenching influences phases transformation : low temperature of quenching presented much phase transformation and decreased size of parameter of $\beta$-dicalcium silicate.

  • PDF

Flexible Mold Production Process for Using the PCM (PCM을 활용한 가변형 몰드 제작 프로세스)

  • Kim, Taekoo;Lee, Donghoon;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.272-273
    • /
    • 2014
  • Existing the free-form concrete segments (FCS) mold is produced by state of solid such as steel, wood, Styrofoam that can not be recycled. Using FCS mold result in delay on schedule and decrease of productivity because it consists of irregular curved variety and it requires more time than fixed mold. Thus, FCS mold should be developed which can reduce the costs and also it can be used as semipermanent. The aim of this study is to suggest of flexible mold production process for using the phase change materials(PCM). PCM is maintain that its solid state at low temperature but it changes phase to liquid state by heating. PCM is suitable material for flexible mold due to change of phase in relatively high temperature compare to other phase change materials such as water. Flexible mold is possible that reuse semi-permanently made by PCM. Thus, this study is proposed the process of flexible mold production for using the PCM. The study results will be used as the basic theory for studies on production and installation of FCS.

  • PDF