• Title/Summary/Keyword: Phase Calibration

Search Result 503, Processing Time 0.028 seconds

Evaluation of Phase Calibration Performance with KVN

  • Jung, Dawoon;Sohn, Young-Jong;Byun, Do-Young;Jung, Taehyun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.36.2-36.2
    • /
    • 2016
  • In mm-VLBI, the quality of observation data is largely affected by atmospheric effect. The most challenging matter is that the phase of correlator output fluctuates rapidly resulting from a variation of atmospheric propagation delay. Consequently, it is demanding to achieve high Signal-to-Noise ratio by integrating data in time domain before calibrating atmospheric delay. However, Korean VLBI Network (KVN) has a unique system to make a 4-frequency (22/43/86/129 GHz) simultaneous observation in mm-wavelength and Frequency Phase Transfer (FPT) calibration technique has effectively removed atmospheric delay in the simultaneous multi-frequency observation of the KVN. For astrometric and astrophysical studies, we evaluated the FPT performance of KVN in various observing conditions. Using the total 38 bright AGNs, we have compared atmospheric conditions such as ground-based weather information, system temperature, atmospheric delay with the calibration results of FPT at 22/43/86/129 GHz during the five experiments in 2013, and quantified its performance in terms of coherence function and Allan variance. We present the analysis result of the relation between the FPT performance and observing conditions.

  • PDF

Measurement of local wall temperature and heat flux using the two-thermocouple method for a heat transfer tube

  • Ahn, Taehwan;Kang, Jinhoon;Jeong, Jae Jun;Yun, Byongjo
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1853-1859
    • /
    • 2019
  • The two-thermocouple method was investigated experimentally to evaluate its accuracy for the measurement of local wall temperature and heat flux on a heat transfer tube with an electric heater rod installed in an annulus channel. This work revealed that a thermocouple flush-mounted in a surface groove serves as a good reference method for the accurate measurement of the wall temperature, whereas two thermocouples installed at different depths in the tube wall yield large bias errors in the calculation of local heat flux and wall temperature. These errors result from conductive and convective changes due to the fin effect of the thermocouple sheath. To eliminate the bias errors, we proposed a calibration method based on both the local heat flux and Reynolds number of the cooling water. The calibration method was validated with the measurement of local heat flux and wall temperature against experimental data obtained for single-phase convection and two-phase condensation flows inside the tube. In the manuscript, Section 1 introduces the importance of local heat flux and wall temperature measurement, Section 2 explains the experimental setup, and Section 3 provides the measured data, causes of measurement errors, and the developed calibration method.

Long-term Stability Optimization of Dynamic Spectroscopic Ellipsometery based on Dual-wavelength Calibration (이중 파장 보정방법 기반 다이나믹 분광타원편광계의 안정도 최적화)

  • Choi, Inho;Kheiryzadehkhanghah, Saeid;Choi, Sukhyun;Hwang, Gukhyeon;Shim, Junbo;Kim, Daesuk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.178-183
    • /
    • 2021
  • This paper describes a dynamic spectroscopic ellipsometry based on dual-wavelength calibration. DSE provides ellipsometric parameters at rates above 20 Hz, but the interferometer's sensitivity to temperature makes it difficult for that proposed system to maintain stable 𝜟k over long periods of time. To solve this problem, we set up an additional path in the DSE to perform simulations of the polarization phase calibration method using dual wavelengths. Through simulation, we were able to eliminate most of the polarization phase error and maintain a stable 𝜟k in the long-term stability experiment for 10 hours. This is the result that the 𝜟k stability of the proposed system is improved tens of times compared to the existing system.

An online Calibration Algorithm using binary spreading code for the CDMA-based Adaptive Antenna Array

  • Lee, Chong-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.9
    • /
    • pp.32-39
    • /
    • 2006
  • In this paper, an iterative subspace-based calibration algorithm for a CDMA-based antenna array in the presence of unknown gain and phase error is presented. The algorithm does not depend on the array geometry and does not require a prior knowledge of the Directions Of Arrival (DOA) of the signals. The method requires the code sequence of a reference user only. The proposed algorithm is based on the subspace method and root finding approach, and it provides estimates of the calibration vector, the DOA and the channel impulse response, by using the code sequence of a reference user. The performance of the proposed algorithm was investigated by means of computer simulations and was verified using field data measured through a custom-built W-CDMA test-bed. The data show that experimental results match well with the theoretical calibration algorithm. Also, teh study propose an efficient algorithm using the simulated annealing technique. This algorithm overcomes the requirement of initial guessing in the subspace-based approach.

System calibration method for Silicon wafer warpage measurement (실리콘 웨이퍼 휨형상 측정 정밀도 향상을 위한 시스템변수 보정법)

  • Kim, ByoungChang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.139-144
    • /
    • 2014
  • As a result of a mismatch of the residual stress between both sides of the silicon wafer, which warps and distorts during the patterning process. The accuracy of the warpage measurement is related to the calibration. A CCD camera was used for the calibration. Performing optimization of the error function constructed with phase values measured at each pixel on the CCD camera, the coordinates of each light source can be precisely determined. Measurement results after calibration was performed to determine the warpage of the silicon wafer demonstrate that the maximum discrepancy is $5.6{\mu}m$ with a standard deviation of $1.5{\mu}m$ in comparison with the test results obtained by using a Form TalySurf instrument.

A Wideband ${\Delta}{\Sigma}$ Frequency Synthesizer for T-DMB/DAB/FM Applications in $0.13{\mu}m$ CMOS (T-DMB/DAB/FM 수신기를 위한 광대역 델타시그마 분수분주형 주파수합성기)

  • Shin, Jae-Wook;Shin, Hyun-Chol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.12
    • /
    • pp.75-82
    • /
    • 2010
  • This paper presents a wideband ${\Delta}{\Sigma}$ fractional-N frequency synthesizer for a multi-band single chip CMOS RFIC transceivers. A wideband VCO utilizes a 6-bit switched capacitor array bank for 2340~3940 MHz frequency range. VCO frequency calibration circuit is designed for optimal capacitor bank code selection before phase locking process. It finishes the calibration process in $2{\mu}s$ over the whole frequency band. The LO generation block has selectable multiple division ratios of ${\div}2$, ${\div}16$, and ${\div}32$ to generate LO I/Q signals for T-DMB/DAB/FM Radio systems in L-Band (1173~1973 MHz), VHF-III (147~246 MHz), VFH-II (74~123 MHz), respectively. The measured integrated phase noise is quite low as it is lower than 0.8 degree RMS over the whole frequency band. Total locking time of the ${\Delta}{\Sigma}$ frequency synthesizer including VCO frequency calibration time is less than $50{\mu}s$. The wideband ${\Delta}{\Sigma}$ fractional-N frequency synthesizer is fabricated in $0.13{\mu}m$ CMOS technology, and it consumes 15.8 mA from 1.2 V DC supply.

Study on the Calibration of a Full-Polarimetric Scatterometer System at X-band (X-밴드 완전 편파 Scatterometer 시스템 보정에 관한 연구)

  • Hwang, Ji-Hwan;Park, Seong-Min;Kwon, Soon-Gu;Oh, Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.4
    • /
    • pp.408-416
    • /
    • 2010
  • A study on the calibration of an X-band HPS(Hongik Polarimetric Scatterometer) system for ground-based operation is presented in this paper. In order to calibrate the scatterometer system, the degree of its distortions are analyzed by comparison between theoretical- and measured-values using the theoretically well-known calibration targets such as a metal sphere, a trihedral corner reflector(CR) and a metal cylinder. The calibration works in the field conditions depend on the precise and stable measurements of those calibration target. we present a measurement technique, so-called, an automatic 2-D target-scanning technique, using the incidence-angle(${\xi}-$ and ${\phi}-$ directions) control of HPS system. Then, we used STCT(Single-Target Calibration Technique) and GCT(General Calibration Technique) to calibrate a distortion of the scatterometer system, and measured the polarimetric RCS(Radar Cross Section) and phase-difference of a trihedral-CR as a test-target to verify the accuracy of the calibration technique. Then, three different types(i.e., 10, 20, 30 cm) of trihedral-CR were used. we obtained the error ranges about ${\pm}1.0$dB, ${\pm}0.5$ dB in a polarimetric RCS and about $-20^{\circ}{\sim}0^{\circ}$ and ${\pm}5^{\circ}$ in the co-polarized phase-difference by using the GCT and STCT, respectively.

An Analysis of Performance Error of Roundness Measuring Instrument -by phase different method- (眞圓度 測定器의 誤差特性에 대한 解析 -위상차법-)

  • 한응교;허문석;박익근
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.31-37
    • /
    • 1988
  • A phase different method to evaluate the instrument error of roundness measuring instrument and the form error of specimens for the calibration of the instrument is used. An instrument with a rotary table supported by an air bearing was calibrated by using the standard balls as a standard. The calibration was carried out repeatedly by setting the same ball in 12 phase angles(per 30.deg.) on the table and by recording their roundness errors with a magnification of 100,000 times. As a result of data analysis of all the observations, readout at each of 144 orientations(per 2.5.deg.) from recorded data file, the error of performance of the instrument and the specimens are separated. In the particular instrument used in the present experiment, the error of the instrument was determined with the accuracy of 0.0164 (.mu.m) and the form error of the specimens was determined with the accuracy of 0.0264,0.0172(.mu.m), respectively. If the instrument was calibrated by using the above specimens, then the accuracy of the measurement of roundness error can be improved to about 0.017 (.mu.m).

  • PDF

Dispersion constraints and the Hilbert transform for electromagnetic system response validation (전자기 탐사 시스템 반응의 타당성 확인을 위한 분산 관계식과 힐버트 변환)

  • Macnae, James;Springall, Ryan
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • As a check on calibration and drift in each discrete sub-system of a commercial frequency-domain airborne electromagnetic system, we aim to use causality constraints alone to predict in-phase from wide-band quadrature data. There are several possible applications of the prediction of in-phase response from quadrature data including: (1) quality control on base level drift, calibration and phase checks; (2) prediction and validation of noise levels in in-phase from quadrature measurements and vice versa and in future; and (3) interpolation and extrapolation of sparsely sampled data enforcing causality and better frequency-domain-time-domain transformations. In practice, using tests on both synthetic and measured Resolve helicopter-borne electromagnetic frequency domain data, in-phase data points could be predicted using a scaled Hilbert transform with a standard deviation between 40 and 80 ppm. However, relative differences between base levels between flight could be resolved to better than 1 ppm, which allows an independent quality control check on the accuracy of drift corrections.

SAR Data Correction Based on Calibrated-Scatterometer Measurements (보정된 Scatterometer의 측정데이터를 사용한 SAR 데이터 교정)

  • 정구준;홍진영;오이석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.2
    • /
    • pp.121-126
    • /
    • 2004
  • This paper presents an SAR-data calibration technique using a well-calibrated scatterometer. At first a fully-polarimetric antenna pattern(magnitude and phase) of the antenna main-beam using a conducting sphere was measured. Then, this data were used to calibrate polarimetrically an auto-mounted network analyzer-based scatterometer system. This scatterometer system can be used to measure the accurate Mueller matrices of earth surfaces such as grass fields, rice fields and bare soil surfaces; i.e., the phase-difference parameters can be obtained as well as the radar scattering coefficients. If a polarimetrically calibrated scatterometer is operated at the same time with the SAR system, the scatterometer data can be used to correct the SAR data, especially the phase-difference parameters. It was found that the correction effect is remarkable for the degree of correlation ${\alpha}$, which is one of the phase-difference parameter, while the correction effect is negligible for the magnitude parameters(backscattering coefficients).