• Title/Summary/Keyword: Phase Behavior

Search Result 2,961, Processing Time 0.036 seconds

In Situ Detection of the Onset of Phase Separation and Gelation in Epoxy/Anhydride/Thermoplastic Blends

  • Choe, Young-Son;Kim, Min-Young;Kim, Won-Ho
    • Macromolecular Research
    • /
    • v.11 no.4
    • /
    • pp.267-272
    • /
    • 2003
  • The isothermal cure reactions of blends of epoxy (DGEBA, diglycidyl ether of bisphenol A)/anhydride resin with polyamide copolymer (poly(dimmer acid-co-alkyl polyamine)) or PEI were studied using differential scanning calorimetry (DSC). Rheological measurements have been made to investigate the viscosity and mechanical relaxation behavior of the blends. The reaction rate and the final cure conversion were decreased with increasing the amount of thermoplastics in the blends. Lower values of final cure conversions in the epoxy/thermoplastic blends indicate that thermoplastics hinder the cure reaction between the epoxy and the curing agent. Complete miscibility was observed in the uncured blends of epoxy/thermoplastics up to $120^{\circ}C$ but phase separations occurred in the early stages of the curing process at higher temperatures than $120^{\circ}C$. According to the rheological measurement results, a rise of G' and G" at the onset of phase separation is seen. A rise of G' and G" is not observed for neat epoxy system since no phase separation is seen during cure reaction. At the onset of phase separation the rheological behavior was influenced by the amount of thermoplastics in the epoxy/thermoplastic blends, and the onset of phase separation can be detected by rheological measurements.

Dynamic Behavior Study in Systems Containing Nonpolar Hydrocarbon Oil and C12E5 Nonionic Surfactant (C12E5 비이온 계면활성제 수용액과 비극성 탄화수소 오일 사이의 동적 거동 관찰)

  • Bae, Min Jung;Lim, Jong Choo
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.46-53
    • /
    • 2009
  • Phase equilibrium and dynamic behavior studies were performed in systems containing $C_{12}E_5$ nonionic surfactant solution and nonpolar hydrocarbon oil. The phase behavior result showed an oil-in-water(O/W) microemulsion(${\mu}E$) in equilibrium with excess oil phase at low temperatures and a water-in-oil(W/O) ${\mu}E$ in equilibrium with excess water phase at high temperatures. For intermediate temperatures a 3 phase region containing excess water, excess oil, and a middle-phase microemulsion was observed and the transition temperature was found to increase with an increase in the chain length of a hydrocarbon oil. Dynamic behavior at low temperatures showed that an oil drop size decreased linearly with time due to solubilization into micelles and the solubilization rate decreased with an increase in the chain length of a hydrocarbon oil. On the other hand, both spontaneous emulsification of water into oil phase and expansion of oil drop with time were observed because of diffusion of surfactant and water into oil phase. Under conditions of a 3 phase region including a middle-phase ${\mu}E$, both rapid solubilization and emulsification of oil into aqueous surfactant solution were found mainly due to the existence of ultra-low interfacial tension. Interfacial tensions were measured as a function of time for n-decane oil drops brought into contact with 1 wt% surfactant solution at $25^{\circ}C$. Both equilibrium interfacial tension and equilibration time were found to increase with an increase in the chain length of a hydrocarbon oil.

Dynamic Behavior Study Using Videomicroscopy in Systems Containing Nonpolar Hydrocarbon Oil and C10E5 Nonionic Surfactant Solution (Videomicroscopy를 이용한 C10E5 비이온 계면활성제 수용액과 비극성 탄화수소 오일 사이의 동적 거동에 관한 연구)

  • Bae, Min-Jung;Lim, Jong-Choo
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.473-478
    • /
    • 2009
  • Phase equilibrium and dynamic behavior studies were performed on systems containing $C_{10}E_5$ nonionic surfactant solutions and nonpolar hydrocarbon oils. The phase behavior showed an oil in water (O/W) microemulsion (${\mu}E$) in equilibrium with excess oil phase at low temperatures and a water in oil (W/O) ${\mu}E$ in equilibrium with excess water phase at high temperatures. For intermediate temperatures a three-phase region containing excess water, excess oil, and a middle-phase microemulsion was observed and the transition temperature was found to increase with an increase in the chain length of a hydrocarbon oil. Dynamic behavior at low temperatures showed that an oil drop size decreased linearly with time due to solubilization into micelles and the solubilization rate decreased with an increase in the chain length of a hydrocarbon oil. On the other hand, both spontaneous emulsification of water into oil phase and expansion of oil drop were observed because of diffusion of surfactant and water into oil phase. Under conditions of a 3 phase region including a middle-phase ${\mu}E$, both rapid solubilization and emulsification of oil into aqueous solutions were found mainly due to the existence of ultra-low interfacial tension. Interfacial tensions were measured as a function of time for n-decane oil drops brought into contact with 1 wt% surfactant solution at $25^{\circ}C$. Both equilibrium interfacial tension and equilibration time increased with an increase in the chain length of a hydrocarbon oil.

Sintering Behavior of (Ti+Ni) Powder Mixture during Spark-Plasma Sintering (방전플라즈마소결에 있어서의 (Ti+Ni) 혼합불말의 소결거동)

  • 김지순;양석균;정순호;강지훈;권영순
    • Journal of Powder Materials
    • /
    • v.11 no.1
    • /
    • pp.55-59
    • /
    • 2004
  • TiNi bodies were produced from (Ti+Ni) powder mixture by spark-plasma sintering procerg. The sintering behavior was investigated through the measurement of change in density, densification rate, phase analysis and microstructure. Irrespective of heating rate, sintered bodies with above 97% relative density could be obtained. TiNi with B2 structure was confirmed as the major phase and $Ti_2Ni,\;TiNi_3$, unreacted Ti, Ni as the second phase. Increase in heating rate suppressed a formation of intermediate phase during sintering process. Increase in holding time at sintering temperature led to a compositional homogenization.

Phase Behavior Study of Poly(ethylene-co-octene) in normal-Hydrocarbons

  • Kwon, Hyuk-Sung;Lee, Sang-Ho
    • Elastomers and Composites
    • /
    • v.38 no.1
    • /
    • pp.51-56
    • /
    • 2003
  • Cloud-point and bubble-point data to $170^{\circ}C$ and 50 bar are presented for four different solvents, normal pentane. n-hexane, n-heptane, and n-octane with poly(ethylene-co-42 wt% octene) ($PEO_{42}$) copolymer. The pressure-concentration isotherms measured for $PEO_{42}$ - normal pentane have maximums at around 5 wt% of the copolymer concentrations in the solution. $PEO_{42}$- normal pentane system exhibits LCST-type phase behavior at temperatures greater than $130^{\circ}C$. Below $120^{\circ}C$, bubble-point type transitions are observed. However, the binary mixtures for $PEO_{42}$ in n-hexane, n-heptane, and n-octane have only bubble-point type transitions at the pressure-temperature region investigated in this study. The single-phase region of PEO - alkane mixtures increases with the molecular size of alkane solvent due to the increasing dispersion interactions between PEO and the alkane.

Dissolution and Reprecipitation Behavior of TiC-TiN-Ni Cermets During Liquid-Phase Sintering

  • Yoon, Choul-Soo;Shinhoo Kang;Kim, Doh-Yeon
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.124-128
    • /
    • 1997
  • An attempt was made to understand the dissolution and reprecipitation behavior of the constituent phases such as TiC, TiN, and Ti(CN) in TiC-TiN-Ni system. During the liquid-phase sintering the TiC phase was found to dissolve preferentially in Ni binder. The solid-solution phase, Ti(CN), formed around the TiN phase, resulting in a core/rim structure. This result was reproduced when large TiC particles were used with fine TiN particles. The path for the microstructural change in TiC-TiN-Ni system was largely controlled by the difference in the interfacial energy of each phase with the liquid binder phase. The results were discussed with thermodynamic principles.

  • PDF

A Behavior Analysis in the Circular Hybrid Subminiture Energy Harvesting Device (순환형 하이브리드 초소형 에너지 수확장치에서의 거동 해석)

  • Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.11
    • /
    • pp.1691-1696
    • /
    • 2013
  • In this paper, an analysis of behavior is performed in the circular hybrid energy harvesting device. This analysis of behavior is to confirm with or without an existence of nonlinear system because its system is required to produce the more energy. To do this, first of all the phase portrait is reconstructed through Taken's embedding method, and then Poincare map is organized by using phase portrait and finally Lyapunov exponent is analyzed.

Dry sliding wear behavior of plain low carbon dual phase steel by strain hardening and oxidation (가공경화와 산화층 형성에 의한 이상조직 저탄소강의 건식 미끄럼 마멸 거동)

  • Yu, H.S.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.149-152
    • /
    • 2006
  • Dry sliding wear behavior of low carbon dual phase steel, of which microstructure consists of hard martensite in a ductile ferrite matrix, has been investigated. The wear characteristics of the dual phase steel was compared with that of a plain carbon steel which was normalized at $950^{\circ}C$ for 30min and then air-cooled. Dry sliding wear tests were carried out using a pin-on-disk type tester at various loads of 1N to 10N under a constant sliding speed condition of 0.2m/sec against an AISI 52100 bearing steel ball at room temperature. The sliding distance was fixed as 1000m for all wear tests. The wear rate was calculated by dividing the weight loss measured to the accuracy of $10^{-5}g$ by the specific gravity and sliding distance. The worn surfaces and wear debris were analyzed by SEM, EDS and a profilomter. Micro vickers hardness values of the cross section of worn surface were measured to analyze strain hardening behavior underneath the wearing surfaces. The were rate of the dual phase steel was lower than the plain carbon steel. Oxidation on the sliding surface and strain hardening were attributed for the higher wear resistance of the dual phase steel.

  • PDF

Observation of Unusual Structural Phase Transition in $VO_2$ Thin Film on GaN Substrate

  • Yang, Hyeong-U;Son, Jeong-In;Cha, Seung-Nam;Kim, Jong-Min;Gang, Dae-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.573-573
    • /
    • 2012
  • High quality $VO_2$ thin films were successfully grown on GaN substrate by optimizing oxygen partial pressure during the growth using RF sputtering technique. The $VO_2$ thin film grown on GaN substrate exhibited an unusual metal insulator transition behavior, which was known to be observed only either in doped sample or under uniaxial stress. Raman spectra also confirmed that metal insulator transition occurred from monoclinic M1 to rutile R phase via monoclinic M2 phase with increasing temperature. We believe that large lattice mismatch between $VO_2$ and GaN substrate may cause M2 phase to be thermodynamically stable. Optical transmittance and its electrical switching behavior were carefully investigated to elucidate the underlying physics of its metal insulator transition behavior. This study may lead to a unique opportunity to better understand the growth mechanism of M2 phase dominant $VO_2$ thin films.

  • PDF

A Study of the Retention Behavior of Proteins in High-Performance Liquid Chromatography(Ⅰ): The Effect of Solvent and Temperature on Retention Behavior of Proteins in Reversed-Phase Chromatography

  • Dai Woon Lee;Byung Yun Cho
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.510-514
    • /
    • 1993
  • The retention behavior of proteins was investigated by using reversed-phase chromatography (RPC), comparing to the retention behavior of small molecules in RPC. The evaluation was carried out on a SynChropak RP-P($C_{18}$) column with 0.1% aq. TFA-organic solvent modifier such as acetonitrile, isopropanol, and ethanol. The Z value (the number of solvent molecules required to displace the solute from the surface) was a general index for the characterization of protein retention as a function of organic concentration over a range of temperature between 5 and 70$^{\circ}C$. Van't Hoff plots provided the basis for evaluating the enthalpic and entropic changes associated with the interaction between protein and the stationary phase. Z values did not change significantly at the range of temperature showing the consistent ${\Delta}H^{\circ}$ and ${\Delta}S^{\circ}$ values. From these investigation, it was concluded that the retention behavior of proteins in RPC was able to be predicted by the retention parameters applied to small molecules. Furthermore, myoglobin and hemoglobin in RPC as stated above showed a similar retention behavior regardless of their molecular weights.