DOI QR코드

DOI QR Code

A Study of the Retention Behavior of Proteins in High-Performance Liquid Chromatography(Ⅰ): The Effect of Solvent and Temperature on Retention Behavior of Proteins in Reversed-Phase Chromatography

  • Published : 1993.08.20

Abstract

The retention behavior of proteins was investigated by using reversed-phase chromatography (RPC), comparing to the retention behavior of small molecules in RPC. The evaluation was carried out on a SynChropak RP-P($C_{18}$) column with 0.1% aq. TFA-organic solvent modifier such as acetonitrile, isopropanol, and ethanol. The Z value (the number of solvent molecules required to displace the solute from the surface) was a general index for the characterization of protein retention as a function of organic concentration over a range of temperature between 5 and 70$^{\circ}C$. Van't Hoff plots provided the basis for evaluating the enthalpic and entropic changes associated with the interaction between protein and the stationary phase. Z values did not change significantly at the range of temperature showing the consistent ${\Delta}H^{\circ}$ and ${\Delta}S^{\circ}$ values. From these investigation, it was concluded that the retention behavior of proteins in RPC was able to be predicted by the retention parameters applied to small molecules. Furthermore, myoglobin and hemoglobin in RPC as stated above showed a similar retention behavior regardless of their molecular weights.

Keywords

References

  1. High-Performance Liquid Chromatography of Peptides and Proteins C. T. Mant;R. S. Hodges
  2. HPLC of Biological Macromolecules K. M. Gooding;F. E. Regnier
  3. Bioprocess Technol. v.9 Z. E. Rassi;A. L. Lee;C. Horvath
  4. Anal. Chem. v.55 L. R. Snyder;M. A. Stadalius;M. A. Quarry
  5. J. Chromatogr. v.296 M. A. Stadalius;H. S. Gold;L. R. Snyder
  6. J. Chromatogr. v.484 L. R. Snyder;J. W. Dolan;D. C. Lommen;G. B. Cox
  7. J. Chromatogr. v.459 B. F. D. Ghrist;L. R. Snyder
  8. J. Chromatogr. v.317 A. J. Sadler;R. Micanovic;G. E. Katzenstein;R. V. Lewis;C. R. Middaugh
  9. J. Chromatogr. v.476 G. Thevenon;F. E. Regnier
  10. J. Chromatogr. v.359 X. M. Lu;K. Benedek;B. L. Karger
  11. J. Chromatogr. v.317 K. Benedek;S. Dong;B. L. Karger
  12. J. Chromatogr. v.327 R. H. Ingraham;S. Y. M. Lau;A. K. Tanja;R. S. Hodges
  13. J. Chromatogr. v.498 M. T. Aubel;G. Guiochon
  14. J. Chromatogr. v.296 X. Geng;F. E. Regnier
  15. J. Chromatogr. v.332 X. Geng;F. E. Regnier
  16. J. Chromatogr. v.499 S. Lin;B. L. Karger
  17. J. Chromatogr. v.476 A. W. Purcell;M. I. Aguilar;M. T. W. Hearn
  18. J. Chromatogr. v.476 K. D. Lork;K. K. Unger;H. Bruckner;M. T. W. Hearn
  19. J. Chromatogr. v.593 A. W. Purcell;M. I. Aguilar;M. T. W. Hearn
  20. J. Chromatogr. v.548 M. C. J. Wilce;M. I. Aguilar;M. T. W. Hearn
  21. J. Chromatogr. v.165 L. R. Snyder;J. W. Dolan;J. R. Gant
  22. J. Chromatogr. v.255 M. T. W. Hearn;B. Grego
  23. Protein Purification-Principles, High Resolution Methods, and Applications J. C. Janson;L. Ryden
  24. J. Chromatogr. v.476 R. J. Simpson;R. L. Moritz
  25. J. Chromatogr. v.507 X. Geng;L. Guo;J. Chang

Cited by

  1. An Analysis of the Interactions of BSA with an Anion-Exchange Surface Under Linear and Non-Linear Conditions vol.10, pp.4, 1993, https://doi.org/10.1007/s10450-005-4815-0