• Title/Summary/Keyword: Pharmacological mechanisms

Search Result 292, Processing Time 0.032 seconds

Anti-Inflammatory Activity of Acacia Honey through Inhibition of NF-κB and MAPK/ATF2 Signaling Pathway in LPS-Stimulated RAW264.7 Cells

  • Kim, Ha Na;Son, Kun Ho;Jeong, Hyung Jin;Park, Su Bin;Kim, Jeong Dong;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.31 no.6
    • /
    • pp.612-621
    • /
    • 2018
  • Honey used as conventional medicine has various pharmacological properties. In the honey and anti-inflammatory effect, Gelam honey and Manuka honey has been reported to exert anti-inflammatory activity. However, the anti-inflammatory effect and potential mechanisms of acacia honey (AH) are not well understood. In this study, we investigated anti-inflammatory activity and mechanism of action of AH in LPS-stimulated RAW264.7 cells. AH attenuated NO production through inhibition of iNOS expression in LPS-stimulated RAW264.7 cells. AH also decreased the expressions of $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$ as pro-inflammatory cytokines, and MCP-1 expression as a pro-inflammatory chemokine. In the elucidation of the molecular mechanisms, AH decreased LPS-mediated $I{\kappa}B$-${\alpha}$ degradation and subsequent nuclear accumulation of p65, which resulted in the inhibition of $NF-{\kappa}B$ activation in RAW264.7 cells. AH dose-dependently suppressed LPS-mediated phosphorylation of ERK1/2 and p38 in RAW264.7 cells. In addition, AH significantly inhibited ATF2 phosphorylation and nuclear accumulation of ATF2 in LPS-stimulated RAW264.7 cells. These results suggest that AH has an anti-inflammatory effect, inhibiting the production of pro-inflammatory mediators such as NO, iNOS, $TNF-{\alpha}$, IL-6, $IL-1{\beta}$ and MCP-1 via interruption of the $NF-{\kappa}B$ and MAPK/ATF2 signaling pathways.

Analysis of the Active Compounds and Therapeutic Mechanisms of Yijin-tang on Meniere's Disease Using Network Pharmacology(I) (네트워크 약리학을 활용한 메니에르병에 대한 이진탕(二陳湯)의 활성 성분과 치료 기전 연구(I))

  • SunKyung Jin;Hae-Jeong Nam
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.36 no.1
    • /
    • pp.50-63
    • /
    • 2023
  • Objectives : This study used a network pharmacology approach to explore the active compounds and therapeutic mechanisms of Yijin-tang on Meniere's disease. Methods : The active compounds of Yijin-tang were screened via the TCMSP database and their target proteins were screened via the STITCH database. The GeneCard was used to establish the Meniere's disease-related genes. The intersection targets were obtained through Venny 2.1.0. The related protein interaction network was constructed with the STRING database, and topology analysis was performed through CytoNCA. GO biological function analysis and KEGG enrichment analysis for core targets were performed through the ClueGO. Results : Network analysis identified 126 compounds in five herbal medicines of Yijin-tang. Among them, 15 compounds(naringenin, beta-sitosterol, stigmasterol, baicalein, baicalin, calycosin, dihydrocapsaicin, formononetin, glabridin, isorhamnetin, kaempferol, mairin, quercetin, sitosterol, nobiletin) were the key chemicals. The target proteins were 119, and 7 proteins(TNF, CASP9, PARP1, CCL2, CFTR, NOS2, NOS1) were linked to Meniere's disease-related genes. Core genes in this network were TNF, CASP9, and NOS2. GO/KEGG pathway analysis results indicate that these targets are primarily involved in regulating biological processes, such as excitotoxicity, oxidative stress, and apoptosis. Conclusion : Pharmacological network analysis can help to explain the applicability of Yijin-tang on Meniere's disease.

Induction of Apoptosis by Ethanol Extract of Lythrum anceps (Koehne) Mak ino in Human Leuk emia U937 Cells (인체백혈병 U937 세포에서 부처꽃 에탄올추출물에 의한 apoptosis 유도)

  • Eun Jung Ahn;Chul Hwan Kim;Jin-Woo Jeong;Buyng Su Hwang;Min-Jeong Seo;Kyung-Min Choi;Su Young Shin
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.77-77
    • /
    • 2020
  • Purple loosestrife-Lythrum anceps (Koehne) Makino is a herbaceous perennial plant belonging to the Lythraceae family. It has been used for centuries in Korea and other Asian traditional medicine. It has been showed pharmacological effects, including anti-oxidant and anti-microbial effects. However, the mechanisms underlying its anti-cancer mechanisms are not yet understood. In this study, we investigated the mechanism of apoptosis signaling pathways by ethanol extract of Lythrum anceps (Koehne) Makino (ELM) in human leukemia U937 cells. Treatment with ELM significantly inhibited cell growth in a dose-dependent manner by inducing apoptosis, as evidenced by the formation of apoptotic bodies (ApoBDs), DNA fragmentation and increased populations of sub-G1 ratio. Induction of apoptosis by ELM was connected with up-regulation of death receptor (DR) 4 and DR5, pro-apoptotic Bax protein expression and down-regulation of anti-apoptotic Bcl-2 protein, and inhibitor of apoptosis protein (IAP) family proteins (XIAP, cIAP-1, survivin), depending on dosage. This induction was associated with Bid truncation, mitochondrial dysfunction, proteolytic activation of caspases (-3, -8 and -9) and cleavage of poly(ADP-ribose) polymerase protein. Therefore, our data indicate that ELM suppresses U937 cell growth by activating the intrinsic and extrinsic apoptosis pathways, and thus may have applications as a potential source for an anti-leukemic chemotherapeutic agent.

  • PDF

A Comparative Study on the Efficacy and Mechanism of Improving Glucose Uptake of Cannabis Root and Stem Extracts (대마 뿌리 및 줄기 추출물의 포도당 흡수 개선 효과 및 기전에 대한 비교 연구)

  • Hye-Lin Jin;Ga-Ram Yu;Hyuck Kim;Kiu-Hyung Cho;Ki-Hyun Kim;Dong-Woo Lim
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.23 no.2
    • /
    • pp.51-59
    • /
    • 2023
  • Objectives: Despite the pharmacological potential of the roots and stems of hemp based on literatures, active research has not been conducted for a long time. Comparative experiments were conducted on antioxidant and anti-inflammatory effects and improvement of glucose uptake using Cannabis root and stem extracts. Methods: Antioxidant contents in Cannabis root and stem extracts were examined with total phenolic, tannin, flavonoid assay. Anti-inflammatory properties were tested in lipopolysaccharides-treated RAW264.7 cells. Efficacy of Cannabis root and stem extracts on glucose uptake was investigated using fluorescent glucose analog (2-NBDG) in palmitate-treated HepG2 cells. The mechanism of action on metabolism was examined by western blot. Results: Antioxidant and anti-inflammatory efficacy were greater in stem extracts, but improvements in glucose uptake performed under various conditions were found to be greater in root extracts. It is assumed that Cannabis root extracts exhibited an improvement in glucose uptake through mechanisms such as AMP-activated protein kinase activation, not depending on general antioxidant and anti-inflammatory effects. Conclusions: Further research is needed on the mechanisms and substances that exhibit the anti-diabetic effects of Cannabis roots and stems.

Anti-inflammatory Effect of Ishige foliacea in RAW 264.7 Cells (넓패추출물에 의한 RAW 264.7 세포에서의 항염효과)

  • Joonghyun Shim
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.50 no.1
    • /
    • pp.29-36
    • /
    • 2024
  • This study was carried out to identify the anti-inflammatory effects of Ishige foliacea (I. foliacea) extract on skin using RAW 264.7 cells. The anti-inflammatory effects of I. foliacea extract on RAW 264.7 cells were assessed by cell viability assay, mRNA expressions, and nitric oxide (NO)/prostaglandin E2 (PGE2) productions. The anti-inflammatory effects of I. foliacea extract were elucidated by analysis of IL-1α/IL-1β/IL-6/TNFα gene expressions and PGE2/NO production. Quantitative real-time polymerase chain reaction showed that I. foliacea extract decreased the gene expression levels of iNOS/COX2/IL-1α/IL-1β and IL-6. Furthermore, PGE2/NO production also revealed that I. foliacea extract exhibited anti-inflammatory properties. These results suggest that I. foliacea extract is an anti-inflammatory compound. It could be a potent cosmeceutical material for anti-inflammatory effects. Further studies on the anti-inflammatory mechanisms of broadleaf extracts are expected to help identify pharmacological mechanisms related to inflammation in addition to cosmeceuticals.

Therapeutic Effect of Crocin in Inflammatory Diseases (염증성 질환에 대한 Crocin의 치료 효과)

  • YoungHee Kim
    • Journal of Life Science
    • /
    • v.34 no.2
    • /
    • pp.138-144
    • /
    • 2024
  • Crocin is a major carotenoid of the Gardenia jasminoides fruit and Crocus sativus stigma (saffron), which are used in various cuisines as flavoring and coloring agents, as well as in phytomedicine for the treatment of several disorders, including headache, fever, edema, fatty liver, viral hepatitis, respiratory disease, menstruation disorders, insomnia, and hypertension. Crocin (C44H64O24) is a chemical diester composed of the dicarboxylic acid crocetin and disaccharide gentiobiose. Many in vitro and in vivo studies have been conducted about the biological and pharmacological function and toxicity of crocin. Crocin has been revealed to have no genotoxicity and pathological manifestation. Crocin acts as an antioxidant, anti-cancer, memory enhancer, anxiolytic, antidepressant, aphrodisiac, anti-atherosclerotic, cardioprotector, and hepatoprotector. Here, an inclusive review of crocin is introduced based on previously explored studies referred to in the literature. Different studies have confirmed the protective role of crocin in the pathogenesis of inflammatory diseases, including inflammatory bowel diseases, gastritis, asthma, atherosclerosis, rheumatoid arthritis, multiple sclerosis, type 1 diabetes, Alzheimer's disease, Parkinson's disease, and depression. It is surmised that crocin suppresses inflammatory, antioxidant, and apoptotic processes through multiple mechanisms. Crocin is considered a safe and effective therapeutic choice for patients with inflammatory conditions, although more research investigating its mechanisms and results acquired in clinical trials are needed.

Progressive Pulmonary Fibrosis: Where Are We Now?

  • Hyung Koo Kang;Jin Woo Song
    • Tuberculosis and Respiratory Diseases
    • /
    • v.87 no.2
    • /
    • pp.123-133
    • /
    • 2024
  • Interstitial lung diseases (ILDs) are a diverse collection of lung disorders sharing similar features, such as inflammation and fibrosis. The diagnosis and management of ILD require a multidisciplinary approach using clinical, radiological, and pathological evaluation. Progressive pulmonary fibrosis (PPF) is a distinct form of progressive and fibrotic disease, occurring in ILD cases other than in idiopathic pulmonary fibrosis (IPF). It is defined based on clinical symptoms, lung function, and chest imaging, regardless of the underlying condition. The progression to PPF must be monitored through a combination of pulmonary function tests (forced vital capacity [FVC] and diffusing capacity of the lung for carbon monoxide), an assessment of symptoms, and computed tomography scans, with regular follow-up. Although the precise mechanisms of PPF remain unclear, there is evidence of shared pathogenetic mechanisms with IPF, contributing to similar disease behavior and worse prognosis compared to non-PPF ILD. Pharmacological treatment of PPF includes immunomodulatory agents to reduce inflammation and the use of antifibrotics to target progressive fibrosis. Nintedanib, a known antifibrotic agent, was found to be effective in slowing IPF progression and reducing the annual rate of decline in FVC among patients with PPF compared to placebos. Nonpharmacological treatment, including pulmonary rehabilitation, supplemental oxygen therapy, and vaccination, also play important roles in the management of PPF, leading to comprehensive care for patients with ILD. Although there is currently no cure for PPF, there are treatments that can help slow the progression of the disease and improve quality of life.

Hesperetin Stimulates Cholecystokinin Secretion in Enteroendocrine STC-1 Cells

  • Kim, Hye Young;Park, Min;Kim, Kyong;Lee, Yu Mi;Rhyu, Mee Ra
    • Biomolecules & Therapeutics
    • /
    • v.21 no.2
    • /
    • pp.121-125
    • /
    • 2013
  • Hesperetin (3',5,7-trihydroxy 4'-methoxyflavanone) and its glycoside hesperidin (hesperetin 7-rhamnoglucoside) in oranges have been reported to possess pharmacological effects related to anti-obesity. However, hesperetin and hesperidin have not been studied on suppressive effects on appetite. This study examined that hesperetin and hesperidin can stimulate the release of cholecystokinin (CCK), one of appetite-regulating hormones, from the enteroendocrine STC-1 cells, and then examined the mechanisms involved in the CCK release. Hesperetin significantly and dose-dependently stimulated CCK secretion with an $EC_{50}$ of 0.050 mM and increased the intracellular $Ca^{2+}$ concentrations ($[Ca^{2+}]_i$) compared to the untreated control. The stimulatory effect by hesperetin was mediated via the entry of extracellular $Ca^{2+}$ and the activation of TRP channels including TRPA1. These results suggest that hesperetin can be a candidate biomolecule for the suppression of appetite and eventually for the therapeutics of obesity.

The Regulation of Lipolysis in Adipose Tissue

  • Serr, Julie;Li, Xiang;Lee, Kichoon
    • Journal of Animal Science and Technology
    • /
    • v.55 no.4
    • /
    • pp.303-314
    • /
    • 2013
  • Knowledge regarding lipid catabolism has been of great interest in the field of animal sciences. In the livestock industry, excess fat accretion in meat is costly to the producer and undesirable to the consumer. However, intramuscular fat (marbling) is desirable to enhance carcass and product quality. The manipulation of lipid content to meet the goals of animal production requires an understanding of the detailed mechanisms of lipid catabolism to help meticulously design nutritional, pharmacological, and physiological approaches to regulate fat accretion. The concept of a basic system of lipases and their co-regulators has been identified. The major lipases cleave triacylglycerol (TAG) stored in lipid droplets in a sequential manner. In adipose tissue, adipose triglyceride lipase (ATGL) performs the first and rate-limiting step of TAG breakdown through hydrolysis at the sn-1 position of TAG to release a non-esterified fatty acid (NEFA) and diacylglycerol (DAG). Subsequently, cleavage of DAG occurs via the rate-limiting enzyme hormone-sensitive lipase (HSL) for DAG catabolism, which is followed by monoglyceride lipase (MGL) for monoacylglycerol (MAG) hydrolysis. Recent identification of the co-activator (Comparative Gene Identification-58) and inhibitor [G(0)/G(1) Switch Gene 2] of ATGL have helped elucidate this important initial step of TAG breakdown, while also generating more questions. Additionally, the roles of these lipolysis-related enzymes in muscle, liver and skin tissue have also been found to be of great importance for the investigation of systemic lipolytic regulation.

The Anti-inflammatory Mechanism of the Peel of Zanthoxylum piperitum D.C. is by Suppressing NF-κB/Caspase-1 Activation in LPS-Induced RAW264.7 Cells

  • Choi, Yun-Hee;Myung, Noh-Yil
    • Korean Journal of Plant Resources
    • /
    • v.32 no.6
    • /
    • pp.669-676
    • /
    • 2019
  • Zanthoxylum piperitum D.C. (ZP) peels has been used as a natural spice and herb medicine for hypertension reduction, for strokes, and for its anti-bacterial and anti-oxidant activity. However, the anti-inflammatory mechanisms employed by ZP have yet to be completely understood. In this study, we elucidate the anti-inflammatory mechanism of ZP in lipopolysaccharide (LPS)-induced RAW264.7 cells. We evaluated the effects of ZP in LPS-induced levels of inflammatory cytokines, prostaglandin E2 (PGE2), and caspase-1 using ELISA. The expression levels of inflammatory-related genes, including cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS), were assayed by Western blot analysis. We elucidated the effect of ZP on nuclear factor (NF)-κB activation by means of a luciferase activity assay. The findings of this study demonstrated that ZP inhibited the production of inflammatory cytokine and PGE2 and inhibited the increased levels of COX-2 and iNOS caused by LPS. Additionally, we showed that the anti-inflammatory effect of ZP arises by suppressing the activation of NF-κB and caspase-1 in LPS- induced RAW264.7 cells. These results provide novel insights into the pharmacological actions of ZP as a potential candidate for development of new drugs to treat inflammatory diseases.