Browse > Article
http://dx.doi.org/10.7732/kjpr.2018.31.6.612

Anti-Inflammatory Activity of Acacia Honey through Inhibition of NF-κB and MAPK/ATF2 Signaling Pathway in LPS-Stimulated RAW264.7 Cells  

Kim, Ha Na (Department of Medicinal Plant Resources, Andong National University)
Son, Kun Ho (Department of Food and Nutrition, Andong National University)
Jeong, Hyung Jin (Department of Medicinal Plant Resources, Andong National University)
Park, Su Bin (Department of Medicinal Plant Resources, Andong National University)
Kim, Jeong Dong (Department of Medicinal Plant Resources, Andong National University)
Jeong, Jin Boo (Department of Medicinal Plant Resources, Andong National University)
Publication Information
Korean Journal of Plant Resources / v.31, no.6, 2018 , pp. 612-621 More about this Journal
Abstract
Honey used as conventional medicine has various pharmacological properties. In the honey and anti-inflammatory effect, Gelam honey and Manuka honey has been reported to exert anti-inflammatory activity. However, the anti-inflammatory effect and potential mechanisms of acacia honey (AH) are not well understood. In this study, we investigated anti-inflammatory activity and mechanism of action of AH in LPS-stimulated RAW264.7 cells. AH attenuated NO production through inhibition of iNOS expression in LPS-stimulated RAW264.7 cells. AH also decreased the expressions of $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$ as pro-inflammatory cytokines, and MCP-1 expression as a pro-inflammatory chemokine. In the elucidation of the molecular mechanisms, AH decreased LPS-mediated $I{\kappa}B$-${\alpha}$ degradation and subsequent nuclear accumulation of p65, which resulted in the inhibition of $NF-{\kappa}B$ activation in RAW264.7 cells. AH dose-dependently suppressed LPS-mediated phosphorylation of ERK1/2 and p38 in RAW264.7 cells. In addition, AH significantly inhibited ATF2 phosphorylation and nuclear accumulation of ATF2 in LPS-stimulated RAW264.7 cells. These results suggest that AH has an anti-inflammatory effect, inhibiting the production of pro-inflammatory mediators such as NO, iNOS, $TNF-{\alpha}$, IL-6, $IL-1{\beta}$ and MCP-1 via interruption of the $NF-{\kappa}B$ and MAPK/ATF2 signaling pathways.
Keywords
Acacia honey; Anti-inflammation; Honey; Pro-inflammatory mediators;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Ducut Sigala, J.L., V. Bottero, D.B. Young, A. Shevchenko, F. Mercurio and I.M. Verma. 2004. Activation of transcription factor NF-kappaB requires ELKS, an IkappaB kinase regulatory subunit. Science 304:1963-1967.   DOI
2 Edwards, M.R., N.W. Bartlett, D. Clarke, M. Birrell, M. Belvisi and S.L. Johnston. 2009. Targeting the NF-kappaB pathway in asthma and chronic obstructive pulmonary disease. Pharmacol. Ther. 121:1-13.   DOI
3 Flower, R.J. 2003. The development of COX2 inhibitors. Nat. Rev. Drug Discov. 2:179-191.   DOI
4 Gasparrini, M., S. Afrin, T.Y. Forbes-Hernandez, D. Cianciosi, P. Reboredo-Rodriguez, A. Amici, M. Battino and F. Giampieri. 2018. Protective effects of Manuka honey on LPS-treated RAW 264.7 macrophages. Part 2: Control of oxidative stress induced damage, increase of antioxidant enzyme activities and attenuation of inflammation. Food Chem. Toxicol. 120:578-587.   DOI
5 Gilmore, T.D. 2006. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25:6680-6684.   DOI
6 Guha, M. and N. Mackman. 2001. LPS induction of gene expression in human monocytes. Cell. Signal. 13:85-94.   DOI
7 Herlaar, E. and Z. Brown. 1999. p38 MAPK signaling cascades in inflammatory disease. Mol. Med. Today. 5:439-447.   DOI
8 Hsu, W.H., B.H. Lee, T.H. Liao and Y.W. Hsu. 2012. Tzuming Pan, Monascus-fermented metabolite monascin suppresses inflammation via PPAR-${\gamma}$ regulation and JNK inactivation in THP-1 monocytes. Food Chem. Toxicol. 50:1178-1186.   DOI
9 Kang, H. S.W. Han, J.W. Hong and N.W. Sohn. 2010. Suppression of tumour necrosis factor-alpha by Schizonepeta tenuifolia water extract via inhibition of IkappaBalpha degradation and Jun N-terminal kinase/stress-activated protein kinase activation. J. Pharm. Pharmacol. 62:1069-1076.   DOI
10 Park, S.H., H.M. Song, H.N. Kim, G.H. Park, H.J. Son, Y. Um, J.A. Park and J.B. Jeong. 2018. Anti-inflammatory effect of biji (Soybean curd residue) on LPS-stimulated RAW264.7 cells. Korean J. Plant Res. 31:117-123.
11 Pradeep, C.R. and G. Kuttan. 2004. Piperine is a potent inhibitor of nuclear factor-kappaB (NF-kappaB), c-Fos, CREB, ATF-2 and proinflammatory cytokine gene expression in B16F-10 melanoma cells. Int. Immunopharmacol. 4: 1795-1803.   DOI
12 Pratheeshkumar, P., T.J. Raphael and G. Kuttan. 2012. Nomilin inhibits metastasis via induction of apoptosis and regulates the activation of transcription factors and the cytokine profile in B16F-10 cells. Integr. Cancer Ther. 11:48-60.   DOI
13 Reimold, A.M., J. Kim, R. Finberg, L.H. Glimcher. 2001. Decreased immediate inflammatory gene induction in activating transcription factor-2 mutant mice. Int. Immunol. 13:241-248.   DOI
14 Schmitt, K.R., A. Diestel, S. Lehnardt, R. Schwartlander, P.E. Lange, F. Berger, O. Ullrich and H. Abdul-Khaliq. 2007. Hypothermia suppresses inflammation via ERK signaling pathway in stimulated microglial cells. J. Neuroimmunol. 189:7-16.   DOI
15 Schuh, K. and A. Pahl. 2009. Inhibition of the MAP kinase ERK protects from lipopolysaccharide-induced lung injury. Biochem. Pharmacol. 77:1827-1834.   DOI
16 Shamshuddin, N.S.S. and R. Mohd Zohdi. 2018. Gelam honey attenuates ovalbumin-induced airway inflammation in a mice model of allergic asthma. J. Tradit. Complement. Med. 8:39-45.   DOI
17 Afrin, S., F. Giampieri, M. Gasparrini, T.Y. Forbes-Hernandez, D. Cianciosi, P. Reboredo-Rodriguez, A. Amici, L.J. Quiles and M. Battino. 2018a. The inhibitory effect of Manuka honey on human colon cancer HCT-116 and LoVo cell growth. Part 1: the suppression of cell proliferation, promotion of apoptosis and arrest of the cell cycle. Food Funct. 9:2145-2157.   DOI
18 Sharma, J.N., A. Al-Omran and S.S. Parvathy. 2007. Role of nitric oxide in inflammatory diseases. Inflammopharmacology 15:252-259.   DOI
19 Zhong, Y., T. Liu, W. Lai, Y. Tan, D. Tian and Z. Guo. 2013. Heme oxygenase-1-mediated reactive oxygen species reduction is involved in the inhibitory effect of curcumin on lipopolysaccharide-induced monocyte chemoattractant protein-1 production in RAW264.7 macrophages. Mol. Med. Rep. 7:242-246.   DOI
20 Abraham, E. 2003. Nuclear factor-kappaB and its role in sepsis-associated organ failure. J. Infect. Dis. 187:364-369.   DOI
21 Afrin, S., F. Giampieri, M. Gasparrini, T.Y. Forbes-Hernandez, D. Cianciosi, P. Reboredo-Rodriguez, P.P. Manna, J. Zhang, J.L. Quiles and M. Battino. 2018b. The inhibitory effect of Manuka honey on human colon cancer HCT-116 and LoVo cell growth. Part 2: Induction of oxidative stress, alteration of mitochondrial respiration and glycolysis, and suppression of metastatic ability. Food Funct. 9:2158-2170.   DOI
22 Alvarez-Suarez, J.M., F. Giampieri and M. Battino. 2013. Honey as a source of dietary antioxidants: structures, bioavailability and evidence of protective effects against human chronic diseases. Curr. Med. Chem. 20:621-638.   DOI
23 Korhonen, R., A. Lahti, H. Kankaanranta and E. Moilanen. 2005. Nitric oxide production and signaling in inflammation. Curr. Drug Targets Inflamm. Allergy 4:471-479.   DOI
24 Kassim, M., M. Achoui, M.R. Mustafa, M.A. Mohd and K.M. Yusoff. 2010. Ellagic acid, phenolic acids, and flavonoids in Malaysian honey extracts demonstrate in vitro anti-inflammatory activity. Nutr. Res. 30:650-659.   DOI
25 Khan, S.U., S.I. Anjum, K. Rahman, M.J. Ansari, W.U. Khan, S. Kamal, B. Khattak, A. Muhammad and H.U. Khan. 2018. Honey: Single food stuff comprises many drugs. Saudi J. Biol. Sci. 25:320-325.   DOI
26 Kole, L., B. Giri, S.K. Manna, B. Pal, B and S. Ghosh. 2011. Biochanin-A, an isoflavon, showed anti-proliferative and anti-inflammatory activities through the inhibition of iNOS expression, p38-MAPK and ATF-2 phosphorylation and blocking NFkappaB nuclear translocation. Eur. J. Pharmacol. 653:8-15.   DOI
27 Li, Q. and I.M. Verma. 2002. NF-kappaB regulation in the immune system. Nat. Rev. Immunol. 2:725-734.   DOI
28 Liu, H., R. Xu, L. Feng, W. Guo, N. Cao, C. Qian, P. Teng, L. Wang, X. Wu, Y. Sun, J. Li, Y. Shen and Q. Xu. 2012. A novel chromone derivative with anti-inflammatory property via inhibition of ROS-dependent activation of TRAF6-ASK1-p38 pathway. PloS One 7:e37168.   DOI
29 Arthur, J.S. and S.C. Ley. 2013. Mitogen-activated protein kinases in innate immunity. Nat. Rev. Immunol. 13:679-692.   DOI
30 Al-Waili, N.S. and A. Haq. 2004. Effect of honey on antibody production against thymus-dependent and thymus-independent antigens in primary and secondary immune responses. J. Med .Food 7:491-494.   DOI
31 Baggiolini, M., B. Dewald and B. Moser. 1997. Human chemokines: an update. Annu. Rev. Immunol. 15:675-705.   DOI
32 Dang, K., K. Lamb, M. Cohen, K. Bielefeldt and G.F. Gebhart. 2008. Cyclophosphamide-induced bladder inflammation sensitizes and enhances P2X receptor function in rat bladder sensory neurons. J. Neurophysiol. 99:49-59.   DOI
33 Shin, S.Y., H.W. Kim, H.H. Jang, Y.J. Hwang, J.S. Choe, J.B. Kim, Y. Lim and Y.H. Lee. 2017. ${\gamma}$-Oryzanol suppresses COX-2 expression by inhibiting reactive oxygen species-mediated Erk1/2 and Egr-1 signaling in LPS-stimulated RAW264.7 macrophages. Biochem. Biophys. Res. Commun. 491:486-492.   DOI
34 Martos, I., M. Cossentini, F. Ferreres and F.A. Tomas-Barberan, F.A., 1997. Flavonoid composition of tunisian honeys and propolis. J. Agr. Food. Chem. 45:2824-2829.   DOI
35 Medzhitov, R. 2008. Origin and physiological roles of inflammation. Nature 454:428-435.   DOI
36 Nho, J.H., B.M. Kang and W.S. Jung. 2018. Anti-inflammatory effect of the Robinia pseudoacacia L. high temperature extract. Korean J. Plant Res. 31:294-302.
37 Suh, S.J., C.H. Kwak, T.W. Chung, S.J. Park, M. Cheeeei, S.S. Park, C.S. Seo, J.K. Son, Y.C. Chang, Y.G. Park, Y.C. Lee, H.W. Chang and C.H. Kim, 2012. Pimaric acid from Aralia cordata has an inhibitory effect on TNF-alpha-induced MMP-9 production and HASMC migration via down-regulated NF-kappaB and AP-1. Chem. Biol. Interact. 199:112-119.   DOI
38 Surh, Y.J., K.S. Chun, H.H. Cha, S.S. Han, Y.S. Keum, K.K. Park and S.S. Lee. 2001. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat. Res. 480-481:243-268.   DOI
39 Wang, Y., Y. Cui, F. Cao, Y. Qin, W. Li and J. Zhang. 2015. Ganglioside GD1a suppresses LPS-induced pro-inflammatory cytokines in RAW264.7 macrophages by reducing MAPKs and NF-kappaB signaling pathways through TLR4. Int. Immunopharmacol. 28:136-145.   DOI
40 Yu, T., S.H. Moh, S.B. Kim, Y. Yang, E. Kim, Y.W. Lee, C.K. Cho, K.H. Kim, B.C. Yoo, J.Y. Cho and H.S. Yoo. 2013. HangAmDan-B, an ethnomedicinal herbal mixture, suppresses inflammatory responses by inhibiting Syk/NF-kappaB and JNK/ATF-2 pathways. J. Med. Food 16:56-65.   DOI
41 Yu, T., Y.J. Li, A.H. Bian, H.B. Zuo, T.W. Zhu, S.X. Ji, F. Kong, D.Q. Yin, C.B. Wang, Z.F. Wang, H.Q. Wang, Y. Yang, B.C. Yoo and J.Y. Cho. 2014. The regulatory role of activating transcription factor 2 in inflammation. Mediators Inflamm. 2014:950472.