Browse > Article
http://dx.doi.org/10.4062/biomolther.2012.077

Hesperetin Stimulates Cholecystokinin Secretion in Enteroendocrine STC-1 Cells  

Kim, Hye Young (Metabolism and Nutrition Research Group, Division of Metabolism and Functionality Research, Korea Food Research Institute)
Park, Min (Metabolism and Nutrition Research Group, Division of Metabolism and Functionality Research, Korea Food Research Institute)
Kim, Kyong (Metabolism and Nutrition Research Group, Division of Metabolism and Functionality Research, Korea Food Research Institute)
Lee, Yu Mi (Metabolism and Nutrition Research Group, Division of Metabolism and Functionality Research, Korea Food Research Institute)
Rhyu, Mee Ra (Metabolism and Nutrition Research Group, Division of Metabolism and Functionality Research, Korea Food Research Institute)
Publication Information
Biomolecules & Therapeutics / v.21, no.2, 2013 , pp. 121-125 More about this Journal
Abstract
Hesperetin (3',5,7-trihydroxy 4'-methoxyflavanone) and its glycoside hesperidin (hesperetin 7-rhamnoglucoside) in oranges have been reported to possess pharmacological effects related to anti-obesity. However, hesperetin and hesperidin have not been studied on suppressive effects on appetite. This study examined that hesperetin and hesperidin can stimulate the release of cholecystokinin (CCK), one of appetite-regulating hormones, from the enteroendocrine STC-1 cells, and then examined the mechanisms involved in the CCK release. Hesperetin significantly and dose-dependently stimulated CCK secretion with an $EC_{50}$ of 0.050 mM and increased the intracellular $Ca^{2+}$ concentrations ($[Ca^{2+}]_i$) compared to the untreated control. The stimulatory effect by hesperetin was mediated via the entry of extracellular $Ca^{2+}$ and the activation of TRP channels including TRPA1. These results suggest that hesperetin can be a candidate biomolecule for the suppression of appetite and eventually for the therapeutics of obesity.
Keywords
Hesperetin; Cholecystokinin; Intracellular $Ca^{2+}$; TRP ankyrin 1; Enteroendocrine cells;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Day, A. J., DuPont, M. S., Ridley, S., Rhodes, M. J. and Morgan, M. R. (1998) Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity. FEBS Lett. 436, 71-75.   DOI   ScienceOn
2 Fujiwara, S., Imada, T., Nakagita, T., okada, S., Nammokub, T., Abe, K. and Misaka, T. (2012) Sweeteners intcracting with the transmembrane domain of the human sweet-taste receptor induce sweet taste synergusms in bunary mixtures. Food Chem. 130, 561-568.   DOI   ScienceOn
3 Garg, A., Garg, S., Zaneveld, L. J. and Singla, A. K. (2001) Chemistry and pharmacology of the citrus bioflavonoid hesperidin. Phytother. Res. 15, 655-669.   DOI   ScienceOn
4 Lee, S. H., Jeong, T. S., Park, Y. B., Kwon, Y. K., Choi, M. S. and Bok, S. H. (1999) Hypocholesterolemic effect of hesperetin mediated by inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase and acyl coenzyme A: cholesterol acyltransferase in rats fed high-cholesterol diet. Nutr. Res. 19, 1245-1258.   DOI   ScienceOn
5 Nakajima, S., Hira, T., Eto, Y., Asano, K. and Hara, H. (2010) Soybean b51-63 peptide stimulates cholecystokinin secretion via a calcium-senseing receptor in enteroendocrine STC-1 cells. Reg. Peptides 159, 148-155.   DOI   ScienceOn
6 Possemiers, S., Bolca, S., Verstraete, W. and Heyerick, A. (2011) The intestinal microbiome: A separate organ inside the body with the metabolic potential to influence the bioactivity of botanicals. Fitoterapia 82, 53-66.   DOI   ScienceOn
7 Purhonen, A. K., Louhivuori, L. M., Kiehne, K., Akerman, K. E. O. and Herzig, K. H. (2008) TRPA1 channel activation induces cholecystokinin release via extracellular calcium. FEBS Lett. 582, 229-232.   DOI   ScienceOn
8 Raybould, H. E. (2007) Mechanisms of CCK signaling from gut to brain. Curr. Opin. Pharmcol. 7, 570-574.   DOI   ScienceOn
9 Sam, A. H., Troke, R. C., Tan, T. M. and Bewick, G. A. (2012) The role of the gut/brain axis in modulating food intake. Neuropharmacology 63, 46-56.   DOI   ScienceOn
10 Story, G. M., Peier, A. M., Reeve, A. J., Eid, S. R., Mosbadher, J., Hrick, T. R., Earley, T. J., Hergarden, A. C., Andersson, D. A., Hwang, S. W., McIntyre, P., Jegla, T., Bevan, S. and Patapoutian, A. (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112, 819-829.   DOI   ScienceOn
11 Walle, T. (2004) Absorption and metabolism of flavonoids. Free Radic. Biol. Med. 36, 829-837.   DOI   ScienceOn
12 Yoshida, H., Takamura, N., Shuto, T., Ogata, K., Tokunaga, J., Kawai, K. and Kai, H. (2010) The citrus flavonoids hesperetin and naringenin block the lipolytic actions of TNF-alpha in mouse adipocytes. Biochem. Biophys. Res. Commun. 394, 728-732.   DOI   ScienceOn
13 Borradaile, N. M., Carroll, K. K. and Kurowska, E. M. (1999) Regulation of HepG2 cell apolipoprotein B metabolism by the citrus fruit flavanones hesperetin and naringenin. Lipids 34, 591-598.   DOI   ScienceOn
14 Cai, Y., Luo, Q., Sun, M. and Corke, H. (2004) Antioxidative activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 74, 2157-2184.   DOI   ScienceOn
15 Chen, M. C., Wu, S. V., Reeve, J. R. and Rozengurt, E. (2006) Bitter stimuli induce $Ca^{2+}$ signaling and CCK release in enteroendocrine STC-1 cells: role of L-type voltage-sensitive $Ca^{2+}$ channels. Am. J. Physiol. Cell Physiol. 291, C726-C739.   DOI   ScienceOn
16 Day, A. J., Canada, F. J., Diaz, J. C. and Kroon, P. A., Mclauchlan, R. and Faulds C. B. (2000) Dietary flavonoid an isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett. 468, 166-170.   DOI   ScienceOn