• Title/Summary/Keyword: Pharmaceuticals and personal care products

Search Result 20, Processing Time 0.027 seconds

Determination of Preservatives in Pharmaceuticals and Personal Care Products (의약품 및 개인위생·생활용품 중 보존제 함유량 분석)

  • Kim, Boyoung;Lee, Joohee;Kim, Seonyeob;Lee, Eunji;Choi, Chorong;Kho, Younglim
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.1
    • /
    • pp.53-60
    • /
    • 2016
  • Objectives: Preservatives are commonly used in pharmaceuticals, cosmetics and other products to extend the expiration date and prevent the growth of microorganisms. Preservatives are generally effective in controlling mold and inhibiting yeast growth, and against a wide range of bacterial attacks as well. They also adversely affect the quality of sperm and cause precocious puberty in children. This study was performed to analyze seven preservatives used in pharmaceuticals and personal care products. Methods: Five kinds of pharmaceuticals and personal care products (PPCPs) were examined for analysis with a high performance liquid chromatography-diode array detector. Each sample was homogenized and the targeted compounds were extracted with methanol. The suspended particulate was removed by syringe filter. Next, the sample was injected into an HPLC system. The separation of the seven preservatives was achieved with a C18 column and gradient mode. The accuracies were between 73% and 120% and precision was lower than 11.58% (RSD). Results: All of the calibration curves showed good linearity with a coefficient of determination ($r^2$) over 0.999. Among the PPCP samples, the detection rate of preservatives was 32.5% for pharmaceuticals, 44.8% for toothpaste, 76.9% for mouthwash, 40.0% for body lotion and 56.0% for wet tissues. The average concentrations of the preservatives in PPCPs were BA 1141.0 mg/kg, MP 709.8 mg/kg, EP 624.9 mg/kg, PP 216.9 mg/kg, BP 167.8 mg/kg, and TCS 538.2 mg/kg. The most frequently detected preservatives in pharmaceuticals and personal care products were BA, MP and PP. The concentrations of preservatives exceeded Korean regulatory standards in 11 samples of medicines, three of mouthwash and two of body lotion. Conclusion: We found that most of the PPCP samples contained various preservatives. It is necessary to identify which preservatives were used and to determine the level of preservatives in PPCPs and to assess the health risk to susceptible populations such as children.

Simultaneous Determination and Occurrences of Pharmaceuticals by Solid-Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) in Environmental Aqueous Samples

  • Koo, So-Hyun;Jo, Cheon-Ho;Shin, Sun-Kyoung;Myung, Seung-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1192-1198
    • /
    • 2010
  • Pharmaceuticals and personal care products (PPCPs) are emerging contaminants in the aquatic environment. Many pharmaceuticals are not completely removed during wastewater treatment, leading to their presence in wastewater treatment effluents, rivers, lakes, and ground water. Here, we developed analytical methods for monitoring ten pharmaceuticals from surface water by LC/ESI-MS/MS. For sample clean-up and extraction, MCX (mixed cation exchange) and HLB (hydrophilic-lipophilic balance) solid-phase extraction (SPE) cartridges were used. The limits of detection (LOD) in distilled water and the blank surface water were in the range of 0.006 - 0.65 and 1.66 - 45.05 pg/mL, respectively. The limits of quantitation (LOQ) for the distilled water and the blank surface water were in the range of 0.02 - 2.17 and 5.52 - 150.15 pg/mL, respectively. The absolute recoveries for fortified water samples were between 62.1% and 125.4%. Intra-day precision and accuracy for the blank surface water were 2.9% - 24.1% (R.S.D.) and -16.3% - 16.3% (bias), respectively. In surface wastewater near rivers, chlortetracycline and acetylsalicylic acid were detected frequently in the range of 0.017 - 5.404 and 0.029 - 0.269 ng/mL, respectively. Surface water near rivers had higher levels than surface water of domestic treatment plants.

Evaluation and application of pretreatment methods for pharmaceuticals and personal care products in the solid phase of sewage samples (하수처리시설 고상시료 중 잔류의약물질 분석을 위한 전처리법 평가 및 적용)

  • Park, Junwon;Kim, Changsoo;Ju, Byoungkyu;Lee, Wonseok;Chung, Hyenmi;Jeong, Dong-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.6
    • /
    • pp.559-572
    • /
    • 2018
  • The aim of this study was to evaluate pretreatment methods for 27 pharmaceuticals and personal care products (PPCPs) in various sewage samples using a modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) and online solid-phase extraction with LC-MS/MS. Extraction efficiencies of PPCPs in the solid phase under different experimental conditions were evaluated, showing that the highest recoveries were obtained with the addition of sodium sulfate and ethylenediaminetetraacetic acid disodium salt dehydrate in acidified conditions. The recoveries of target compounds ranged from 91 to 117.2% for liquid samples and from 61.3 to 137.2% for solid samples, with a good precision. The methods under development were applied to sewage samples collected in two sewage treatment plants (STPs) to determine PPCPs in liquid and solid phases. Out of 27 PPCPs, more than 19 compounds were detected in liquid samples (i.e., influent and effluent) of two STPs, with concentration ranges of LOQ-33,152 ng/L in influents and LOQ-4,523 ng/L in effluents, respectively. In addition, some PPCPs such as acetylsalicylic acid, ibuprofen, and ofloxacin were detected at high concentrations in activated sludge as well as in excess sludge. This methodology was successfully applied to sewage samples for the determination of the target compounds in STPs.

Removal of a synthetic broad-spectrum antimicrobial agent, triclosan, in wastewater treatment systems: A short review

  • Lee, Do Gyun
    • Environmental Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.111-120
    • /
    • 2015
  • Contaminants of emerging concern (CECs) including endocrine disrupting compounds (EDCs) and pharmaceuticals and personal care product chemicals (PPCPs) have recently received more attention because of their occurrence in water bodies and harmful impacts on human health and aquatic organisms. Triclosan is widely used as a synthetic broad-spectrum antimicrobial agent due to its antimicrobial efficacy. However, triclosan detected in aquatic environment has been recently considered as one of CECs, because of the potential for endocrine disruption, the formation of toxic by-products and the development of cross-resistance to antibiotics in aquatic environment. This comprehensive review focuses on the regulations, toxicology, fate and transport, occurrence and removal efficiency of triclosan. Overall, this review aims to provide better understanding of triclosan and insight into application of biological treatment process as an efficient method for triclosan removal.

Removal of acetaminophen from wastewater by constructed wetlands with Scirpus validus

  • Phong, Vo Hoang Nhat;Koottatep, Thammarat;Chapagain, Saroj Kumar;Panuvatvanich, Atitaya;Polprasert, Chongrak;Ahn, Kyu-Hong
    • Environmental Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.164-170
    • /
    • 2016
  • Since most of the existing wastewater treatment options lack the ability to treat micro-contaminants, the increased use of pharmaceuticals and personal care products (PPCPs) and release as human waste have become a serious concern in recent years. Constructed wetlands (CWs) are a low-cost technology for wastewater treatment, however, its performance in term of PPCPs removal has not yet been fully investigated. This study aimed to characterize the removal factors and efficiency of acetaminophen (ACT) removal by CWs. The results revealed the decreased concentrations of ACT with increasing hydraulic retention times (HRT) of 0, 3, 5 days. The contribution of removal factors was found to be varied with initial ACT concentration. At the low ACT concentration (i.e. 1 ppb), plant uptake was the dominant, followed by microbial and photolytic removal. In contrast, at the high ACT concentration (i.e. 100 ppb), microbial and photolytic removal were found as dominant factors. On the other hand, hydrogen peroxide ($H_2O_2$) concentration was found at higher level in the plant shoot than in the root probably due to occurrence of the Fenton reaction resulting in PPCPs removal.

Effects of Adding UV and H2O2 on the Degradation of Pharmaceuticals and Personal Care Products during O3 Treatment

  • Kim, Il-Ho;Kim, Seog-Ku;Lee, Hyun-Dong;Tanaka, Hiroaki
    • Environmental Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.131-136
    • /
    • 2011
  • The degradation of 30 pharmaceuticals and personal care products (PPCPs) subjected to $O_3$, $O_3$/UV, and $O_3/H_2O_2$ treatments were investigated using semi-batch tests and evaluated by their pseudo-first-order rate constants. The additional application of UV or $H_2O_2$ during $O_3$ treatment significantly improved the degradation rate of most of the PPCPs. At the same $O_3$ feed rate, $O_3$/UV treatment exhibited much higher PPCP degradation efficiency than that of $O_3$ treatment. This was probably due to degradation of the PPCPs by $O_3$, direct UV photodegradation, and OH radicals that formed from the photodegradation of $O_3$ during $O_3$/UV treatment. PPCP degradation by $O_3$ was also promoted by adding $H_2O_2$ during the $O_3$ treatment. However, when the initial $H_2O_2$ concentration was high during $O_3$ treatment, OH radicals were likely to be scavenged by excess $H_2O_2$, leading to low PPCP degradation. Therefore, it is important to determine the appropriate $H_2O_2$ dosage during $O_3$ treatment to improve PPCP degradation when adding $H_2O_2$ during $O_3$ treatment.

Degradation Efficiency and Characterization of Lincomycin by Electron Beam Irradiation

  • Ham, Hyun-Sun;Cho, Hyun-Woo;Myung, Seung-Woon
    • Mass Spectrometry Letters
    • /
    • v.5 no.3
    • /
    • pp.89-93
    • /
    • 2014
  • Lincomycin is one of the major species among the Pharmaceuticals and Personal Care Products (PPCPs) detected from the four major rivers in Korea. The structure characterization was performed of six degradation products of lincomycin formed under the irradiation of electron beam, and the degradation efficiency as a function of the various irradiation dose and sample concentration was investigated. Electron beam (10 MeV, 0.5 mA and 5 kW) experiments for the structural characterization of degradation products that are fortified with lincomycin, were performed at the dose of 10 kGy. The separation of degradation products and lincomycin was carried out using a C18 column ($2.1{\times}100$ mm, $3.5{\mu}m$), using gradient elution with 20 mM ammonium acetate and acetonitrile. The structures of six degradation products of lincomycin were proposed by interpretation of mass spectra and chromatograms by LC-MS/MS. The mass fragmentation pathways of mass spectra in tandem mass spectrometry were also proposed. Experiments were performed of the degradation efficiency as a function of the irradiation dose intensity and the initial concentration of lincomycin in an aqueous environment. In addition, increased degradation efficiency was observed with a higher dose of electron beam and lower concentration.

Constituent of Natural Organic Matter (NOM) and its Effect in Water (물 속의 자연 유기물 성분이 환경에 미치는 영향)

  • Son, Hokyong;Erdei, Laszlo;Kim, Jong-Ho
    • Applied Chemistry for Engineering
    • /
    • v.17 no.2
    • /
    • pp.119-124
    • /
    • 2006
  • Natural organic matter (NOM) should be carefully considered in terms of its constituent and effect because NOM is complex substances that occur in spatially and seasonally varying concentrations in natural water. This review presents characteristics of natural organic matter present in water. These compounds mainly include humic substances, carbohydrates, proteins (amino acids), hexosamines, fats, oils, greases, and trace organic compounds (endocrine disrupting chemicals and pharmaceuticals and personal care products).

Removal characteristic on micropollutants as ibuprofen, acetaminophen, caffeine in small water fall system using HBC ring media (생물막 끈상여재를 이용한 낙차형태별 수중 미량유해물질 ibuprofen, acetaminophen, caffeine분해특성)

  • Dockko, Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.1
    • /
    • pp.129-135
    • /
    • 2009
  • PPCP (pharmaceuticals and personal care products) is known as micropollutant that is released from wastewater treatment plant. Research represents that these contaminants have increased in the last 10 years. This study tries to make four different trickling filter systems using plastic fiber media to remove PPCP such as acetaminophen, ibuprofen, caffeine. The results of the experiment that compares the process efficiencies of four different systems (A, B, C and D) using HBC media show that almost all the reactor has around 95% removal efficiency. Slope type HBC reactor has twice higher efficiency rather than submerged type reactor to remove PPCP in water system. In 8 hours, 89% of acetaminophen, ibuprofen, caffeine are removed in slope type reactor while 39% of them in submerged type.

Degradation of residual pharmaceuticals in water by UV/H2O2 advanced oxidation process (UV/H2O2 고도산화기술을 이용한 수중 잔류의약물질 제거)

  • Park, Chinyoung;Seo, Sangwon;Cho, Ikhwan;Jun, Yongsung;Ha, Hyunsup;Hwang, Tae-Mun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.6
    • /
    • pp.469-480
    • /
    • 2019
  • This study was conducted to evaluate the degradation and mineralization of PPCPs (Pharmaceuticals and Personal Care Products) using a CBD(Collimated Beam Device) of UV/H2O2 advanced oxidation process. The decomposition rate of each substance was regarded as the first reaction rate to the ultraviolet irradiation dose. The decomposition rate constants for PPCPs were determined by the concentration of hydrogen peroxide and ultraviolet irradiation intensity. If the decomposition rate constant is large, the PPCPs concentration decreases rapidly. According to the decomposition rate constant, chlortetracycline and sulfamethoxazole are expected to be sufficiently removed by UV irradiation only without the addition of hydrogen peroxide. In the case of carbamazepine, however, very high UV dose was required in the absence of hydrogen peroxide. Other PPCPs required an appropriate concentration of hydrogen peroxide and ultraviolet irradiation intensity. The UV dose required to remove 90% of each PPCPs using the degradation rate constant can be calculated according to the concentration of hydrogen peroxide in each sample. Using this reaction rate, the optimum UV dose and hydrogen peroxide concentration for achieving the target removal rate can be obtained by the target PPCPs and water properties. It can be a necessary data to establish design and operating conditions such as UV lamp type, quantity and hydrogen peroxide concentration depending on the residence time for the most economical operation.