

Research Paper

http://dx.doi.org/10.4491/eer.2011.16.3.131 pISSN 1226-1025 eISSN 2005-968X

Effects of Adding UV and H₂O₂ on the Degradation of Pharmaceuticals and Personal Care Products during O₃ Treatment

Ilho Kim¹, Seogku Kim¹, Hyundong Lee^{1†}, Hiroaki Tanaka²

¹Water Resources & Environment Research Department, Korea Institute of Construction Technology; Department of Construction Environment Engineering, University of Science & Technology, Korea Institute of Construction Technology, Goyang 411-712, Korea ²Research Center for Environmental Quality Management, Kyoto University, Shiga 520-0811, Japan

Abstract

The degradation of 30 pharmaceuticals and personal care products (PPCPs) subjected to O_3 , O_3/UV , and O_3/H_2O_2 treatments were investigated using semi-batch tests and evaluated by their pseudo-first-order rate constants. The additional application of UV or H_2O_2 during O_3 treatment significantly improved the degradation rate of most of the PPCPs. At the same O_3 feed rate, O_3/UV treatment exhibited much higher PPCP degradation efficiency than that of O_3 treatment. This was probably due to degradation of the PPCPs by O_3 , direct UV photodegradation, and OH radicals that formed from the photodegradation of O_3 during O_3/UV treatment. PPCP degradation by O_3 was also promoted by adding H_2O_2 during the O_3 treatment. However, when the initial H_2O_2 concentration was high during O_3 treatment, OH radicals were likely to be scavenged by excess H_2O_2 , leading to low PPCP degradation. Therefore, it is important to determine the appropriate H_2O_2 dosage during O_3 treatment to improve PPCP degradation when adding H_2O_2 during O_3 treatment.

131

Keywords: O₃, O₃/H₂O₂, O₃/UV, Pharmaceuticals, PPCPs

1. Introduction

The main reasons for the use of O_3 are disinfection and oxidation such as taste and odor control, decolorization, and elimination of micropollutants. Similar to other disinfectants such as chlorine or chlorine dioxide for water treatment, O_3 is unstable in water, and undergoes reactions with some water matrix components. However, O_3 decomposes, generating OH radicals, which are strong oxidants in water [1]. The disinfection process occurs mainly through the reaction of O_3 molecules, whereas the oxidation process may occur through both O_3 and OH radicals [2]. O_3 reacts with a variety of inorganic and organic compounds. However, the fact that rate constants for the O_3 reaction range over several orders of magnitude means that O_3 is a very selective oxidant. O_3 reacts quickly with phenols, amines, compounds with C = C double bonds, and aromatic compounds.

 O_3 -based advanced oxidation processes (AOPs) are applied to oxidize O_3 -resistant compounds such as pesticides and chlorinated solvents by OH radicals, which are powerful and non-selective oxidants. OH radicals react very quickly with various inorganic and organic compounds in water. Therefore, OH

radicals also contribute to the oxidation of micropollutants. However, their efficiency is often limited by the scavenging effect of the water matrix. In O_3 -based AOPs, the formation of OH radicals is accelerated by increasing the pH of the water, by dosing H_2O_2 , or by adding UV irradiation. This ensures faster oxidation of O_3 -resistant compounds.

Potential risks associated with the release of pharmaceuticals and personal care products (PPCPs) into the aquatic environment have become an increasingly important issue for environmental regulators and the pharmaceuticals industry [3]. Therefore, the use of appropriate PPCP removal technologies should be applied in wastewater treatment plants to limit the aquatic risk of PPCPs. Many studies have been conducted on the degradation of PPCPs by O₃-based processes, showing that O₃ was the oxidant, although some PPCPs seem to resistant to O₃ [4-7]. A great variety of PPCPs are being used in daily life and have been detected in the water environment [3, 8, 9]. Nevertheless, a limited number of PPCPs have been investigated because of the difficulty of the PPCPs analysis. The objective of this study was to investigate the effects of H_2O_2 and UV on the degradation of 30 PPCPs during O₃ treatment.

Received June 22, 2010 Accepted July 14, 2011

[†]Corresponding Author E-mail: hdlee@kict.re.kr Tel: +82-31-910-0297 Fax: +82-31-910-0291

⁽CC) This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons. org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

2. Materials and Methods

2.1. Selected PPCPs and Preparation of Test Water

The 30 PPCPs selected in this study consisted of analgesics, antiarrhythmic agents, antibiotics, bronchodilators, an antiitching drug, anticonvulsants, antineoplastic agents, insect repellents, a carbadox (antiparasitic agent) intermediate, and an *N*-methyl d-aspartate receptor antagonist. Detailed information on the 30 PPCPs and their analytical method using high performance liquid chromatography-mass spectroscopy/mass spectroscopy (HPLC-MS/MS) was provided in our previous study [10]. To examine the degradability of the 30 PPCPs using O₃, O₃/ UV, and O₃/H₂O₂, test water samples were prepared by spiking the 30 PPCPs into pure water obtained from Nisso Shoji Co., Ltd (Tokyo, Japan). The initial concentrations of the 30 PPCPs in the

Fig. 1. Semi-batch reactor for the $\rm O_3,\,O_3/UV_{7}$ and $\rm O_3/H_2O_2$ treatment experiments.

Table 1. Measurement conditions of the high performance liquidchromatography-mass spectroscopy/mass spectroscopy (HPLC-MS/MS) for the pharmaceuticals and personal care products(PPCPs) analysis

- (Column:	Waters	SunFire	C18	2.1	mm >	< 150	mm,	5	μm
-----	---------	--------	---------	-----	-----	------	-------	-----	---	----

- Column Temp.: 20°C
- Flow rate: 0.2 mL/min
- Injection volume: 10 µL

_	Mobile Phase:	A Water,	B Methanol,	C 1%	Formic	acid
	nioone i naoei		D meetinamon,	01/0	1 0111110	aora

- Gradient	Time(min)	A(%)	B(%)	C(%)	
	0	70	20	10	
	15	0	90	10	
	20	70	20	10	

<MS/MS : Quattro micro API>

- Ionization: Electrospray Ionization(ESI) Positive

- Spray Voltage: 3.5 kV

- Capillary Temp.: 350°C - Source Temp.: 120

test water samples ranged from 4.7 μ g/L (mefenamic acid) to 147.6 μ g/L (sulfamonomethoxine). The procedure for the preparation of the test water is described elsewhere [10].

2.2. Analytical Method

The 30 PPCPs were quantified simultaneously with a HPLC/ MS/MS. An HPLC Alliance Waters2695 separation module (Water Inc., Milford, MA, USA) and a Quattro micro API tandem mass spectrometer were used for the HPLC and the MS/MS, respectively. MassLynxTM Software (Waters) managed the control of the HPLC/MS/MS system and treatment of the data acquired during the operation of HPLC/MS/MS. A gradient elution analysis method by varying mobile phase polarity with time was adopted to simultaneously quantify the 30 PPCPs. Samples taken during the experiments were introduced directly to HPLC/MS/ MS. Table 1 shows the measurement conditions for HPLC/MS/ MS in detail.

2.3. Experimental Setup and Conditions

All of the experiments were conducted using a cylindrical stainless reactor (Fig. 1). The temperature of the test water samples was maintained at 20°C with a hot water circulator. The pH of all test water samples, prepared by spiking the 30 PPCPs into pure water (PW), was adjusted to 7.0 with a 1 M phosphate buffer solution. Treatment experiments started by continuously injecting O₃ gas into the reactor. We conducted three different treatment experiments (O₃, O₃/UV, and O₃/H₂O₂) to compare the degradation characteristics of each PPCP.

An O_3 treatment experiment was performed under three different O_3 feed rates of 0.15, 0.3, and 0.6 mg/L/min. In this study, O_3 feed rate was controlled by supplying O_3 gas to the reactor at concentrations of 3.3, 6.6, and 13.2 mg/L, respectively, and by maintaining the flow rate of O_3 gas at a constant 1.0 L/min during all experiments.

An 8 W low-pressure mercury lamp emitting radiation at 254 nm with a UV intensity of 0.384 mW/cm² was used for O_3/UV treatment. The O_3/UV treatment was performed on test water prepared with PW at O_3 feed rates of 0.15, 0.3, and 0.6 mg/L/min. The O_3/H_2O_2 treatment was performed by adding H_2O_2 solution to the test water before O_3 treatment. Initial H_2O_2 concentrations of 2.3 mg/L and 11.2 mg/L in the test water prepared with PW were used, and the O_3 feed rate was 0.6 mg/L/min in both experiments.

3. Results and Discussion

3.1. Determination of the PPCP Rate Constants for the O_3 , O_3/UV , and O_3/H_2O_3 Treatments

The degradation reaction of an organic compound by O_3 is generally expressed as [11]:

$$-\frac{d[C]}{dt} = k[O_3][C] = k'_{O_3}[C]$$
(1)

where [*C*] is the concentration of the organic compound, *k* is the first order rate constant, $[O_3]$ is the concentration of dissolved O_3 , and k'_{O_3} is the pseudo first-order rate constant. Pseudo first-order conditions are met if $[O_3] \ge -10 \times [C]$, and $[O_3]$ does not

Fig. 2. Decrease in concentration of *N*,*N*-diethyl-*m*-toluamide (DEET) with time during O_3 , O_3/UV , and O_3/H_2O_2 treatments (O_3 feed rate: 0.6 mg/L/min, UV intensity: 0.384 mW/cm², initial H_2O_2 concentration: 11.2 mg/L).

self-decay significantly during the reaction [12]. For experiments using the same reactor, the k'_{O_3} value can be used as an indicator for the reactivity of an organic compound with O_3 . Integrating Eq. (1), we obtain

$$\ln(C_t / C_0) = k'_{O_t} t$$
 (2)

where C_t is the concentration of the organic compound at the reaction time *t*, and C_0 is the initial concentration of the organic compound.

In the case of O_3/UV treatment, the organic compound is degraded by O_3 , direct UV photodegradation, and OH radicals formed by UV photodegradation of O_3 . Therefore, the decrease in concentration of the organic compound during O_3/UV treatment can be expressed as:

$$-\frac{d[C]}{dt} = (k[O_3] + 2.3LI_0\varphi\varepsilon + k_R[OH\cdot])[C]$$
(3)

Integrating Eq. (3), we obtain

$$\ln(C_t / C_0) = (k[O_3] + 2.3LI_0 \varphi \varepsilon + k_R[OH \cdot])t = k'_{O_3/UV}t$$
(4)

where *L* is the reactor optical light path (cm), I_0 is the UV intensity (einstein/sec), \emptyset is the quantum yield (mol/photon), ε is the molar extinction coefficient of the organic compound (/M/cm), $k_{\rm R}$ is the second-order rate constant of OH radicals, and [*OH*·] is the concentration of OH radicals.

In the case of O_3/H_2O_2 treatment, the organic compound is mainly degraded by O_3 and OH radicals, so the decrease in concentration of the organic compound can be expressed as follows:

$$-\frac{d[C]}{dt} = (k[O_3] + k_R[OH \cdot])[C]$$
(5)

Integrating Eq. (5), the following expression is obtained:

$$\ln(C_t / C_0) = (k[O_3] + k_R[OH \cdot])t = k'_{O,/H,O_2}t$$
(6)

If the $\ln(C_t/C_0)$ of an organic compound decreases linearly with time, the degradation reaction of the compound by each treatment can be regarded as a pseudo-first-order reaction. In this case, the pseudo-first-order rate constants $(k'_{O_t}, k'_{O_t/UV})$ and $k'_{\rm O_3/H_2O_2})$ for O_3, O_3/UV, and O_3/H_2O_2, respectively, are obtained from the slopes of each straight line.

Fig. 2 shows the decrease in concentration of N,N-diethyl*m*-toluamide (DEET) for a reaction time of 5 min during the O₂, O₂/UV, and O₂/H₂O₂ treatments, which were conducted using test water samples prepared by simultaneously spiking the 30 PPCPs into pure water. O, was supplied to the reactor at a feed rate of 0.6 mg/L/min in all experiments. O2/H2O2 treatment was performed by supplying O₂ to the test water samples with an initial H₂O₂ concentration of 11.2 mg/L. Regardless of the treatment method, the DEET concentration decreased linearly with time. Therefore, the degradation reactions of DEET with O₂, O₂/ UV, and O₃/H₂O₂ conformed with pseudo-first-order reactions under the experimental conditions of this study. As shown in Fig. 2, the value of k'_{O_3} (the pseudo-first-order rate constant for O₃) of DEET was 1.7 × 10⁻³/sec, whereas that of $k'_{\rm O_3/H_2O_2}$ was slightly enhanced at 2.3×10^{-3} /sec due to the contribution of OH radicals to DEET degradation. Moreover, the value of $k'_{\rm O_3/UV}$ increased by 2.6×10^{-3} /sec as a result of adding UV to the O₂ treatment.

A linear decrease in concentration for a 5 min reaction time was shown by all of the PPCPs selected in this study, irrespective of the applied treatment methods, and the pseudo-first-order rate constants of the 30 PPCPs for each process could be obtained from the slope of each straight line. The pseudo-first-order rate constants were used to compare the degradability of the 30 PPCPs using each treatment method as well as the effects of adding H_2O_2 and UV during O_3 treatment on PPCP degradation.

3.2. Effect of UV on PPCP Degradation during O₃ Treatment

Fig. 3 compares the pseudo first-order rate constants of the 30 PPCPs for O₂ treatment with/without UV under O₂ feed rates of 0.15, 0.3, and 0.6 mg/L/min, respectively. The combination of UV during O₂ treatment led to a distinct improvement in degradation rates of most of the PPCPs. Rate constants of several PPCPs such as ketoprofen, diclofenac, sulfamethoxazole, and antipyrine increased considerably by adding UV during the O₂ treatment. In particular, ketoprofen and diclofenac showed much higher rate constants than those for O₂ treatment, regardless of the O₂ feed rate. Our previous study showed that ketoprofen and diclofenac are degraded very easily with UV, indicating that direct UV photodegradation mainly contributes to its degradation during UV/H2O2 treatment [11]. In this study, it was thought that such fast degradation of ketoprofen and diclofenac could be attributed to direct UV photodegradation rather than to OH radicals during O₂/UV treatment.

The degradation efficiencies of the 30 PPCPs with each treatment were compared to investigate the effect of O₂ feed rate on PPCP degradation during the O₂ and O₂/UV treatments. The degradation efficiency was calculated as the ratio of the average rate constant (/sec) for all PPCPs to the O₃ consumption per volume of reactor (mg/L). As a result, 1.6×10^{-3} , 2.2×10^{-3} , and 1.8 \times 10⁻³ L/mg/sec were obtained for $\rm O_3$ feed rates of 0.15, 0.3, and 0.6 mg/L/min, respectively, during O₃ treatment. The degradation efficiencies following O_2/UV treatment were 6.9×10^{-3} , $3.8 \times$ 10^{-3} , and 3.3×10^{-3} L/mg/sec for O₂ feed rates of 0.15, 0.3, and 0.6 mg/L/min, respectively, showing apparently increased values compared to those for O₂ treatment. However, in contrast to the O₂ treatment, the highest degradation efficiency was observed at a low O₂ feed rate of 0.15 mg/L/min, indicating that the O₂ dose required for PPCP degradation can be reduced by combining UV and O₂ treatment.

Fig. 3. Comparison of rate constants of the 30 pharmaceuticals and personal care products (PPCPs) during O_3 treatment with/without UV. (a) O_3 feed rate, 0.15 mg/L/min, (b) O_3 feed rate, 0.3 mg/L/min, and (c) O_3 feed rate, 0.6 mg/L/min.

Fig. 4. Comparison of rate constants of the 30 pharmaceuticals and personal care products (PPCPs) during O₃ treatment with/without adding H₂O₂.

3.3. Effect of Adding H_2O_2 on PPCP Degradation during O_3 Treatment

Fig. 4 compares the rate constants of the 30 PPCPs after O_3/H_2O_2 treatment with the k' values obtained for O_3 treatment using an O_3 feed rate of 0.6 mg/L/min. O_3/H_2O_2 experiments were conducted by maintaining the initial H_2O_2 concentrations in tested water at 2.3 mg/L and 11.2 mg/L before injecting O_3 gas into the tested water. No variation was observed in the PPCP concentrations when only H_2O_2 was added to the PPCP-tested water. Here, the rate constants of 28 PPCPs were discussed, except ceftiofur and chlorotetracycline, for which peaks were not observed. O_3 treatment combined with an initial H_2O_2 concentration of 2.3 mg/L showed 1.1 to 6.5 times higher rate constants for 26 PPCPs than those for O_3 treatment alone. This was due to the contribution of OH radicals formed by the reaction of Eq. (7) [13]. However, the DEET and tetracycline rate constants did not improve despite combining the H_2O_2 and the O_3 treatment.

$$2O_3 + H_2O_2 \to 2OH \cdot + 3O_2 \tag{7}$$

The rate constants of 17 PPCPs (2-QCA, acetaminophen, antipyrine, carbamazepine, clarithromycin, clenbuterol, crotamiton, DEET, fenoprofen, ifenprodil, isopropylantipyrine, mefenamic acid, metoprolol, naproxen, oxytetracycline, propranolol, and sulfamonomethoxine) increased by 1.1 to 1.6 times when an initial H₂O₂ concentration of 11.2 mg/L was combined with the O₂ treatment. In particular, even slightly lower rate constants than for the O₃ treatment alone were observed in four PPCPs such as cyclophosphamide, disopyramide, tetracycline, and theophylline. Moreover, the average rate constants of the 28 PPCPs for 2.3 mg/L and 11.2 mg/L were 6.2 \times 10 $^{\text{-3}}/\text{sec}$ and 5.1 \times 10 $^{\text{-3}}/\text{sec}$, respectively, indicating that a higher H₂O₂ concentration does not necessarily lead to a faster PPCP reaction. The one reason why a high H₂O₂ concentration cannot ensure a fast reaction with the target compound is the consumption of OH radicals formed during O₃ treatment by excess H₂O₂. OH radicals can be scavenged by H₂O₂ in water as shown in Eq. (8) [13], leading to a low degradation rate of the target compounds.

$$OH \cdot +H_2O_2 \rightarrow HO_2 + H_2O$$
 (8)

When a high initial H_2O_2 concentration of 11.2 mg/L was added, OH radicals formed by the reaction of Eq. (7) were scavenged by excess H_2O_2 added during the O_3 treatment; thus, lower rate constants than those for O_3/H_2O_2 treatment using low H_2O_2 concentration of 2.3 mg/L were obtained. This result indicates that it will be important to determine the appropriate H_2O_2 dose for O_3 treatment to improve reaction rates of PPCPs by adding H_2O_2 during O_2 treatment.

4. Conclusions

This study investigated the effects of adding H_2O_2 and UV on the degradation of 30 PPCPs during O_3 treatment. The new findings from this study are as follows:

- 1) Degradation reactions of the target PPCPs with $O_{3'}$, $O_{3'}$ /H₂O_{2'} and $O_{4'}$ /UV could be expressed by pseudo-first-order kinetics.
- 2) The combination of UV or H_2O_2 with O_3 promoted the degradation reactions of all PPCPs under the tested conditions due to direct UV photodegradation or OH radicals.
- 3) Several PPCPs such as ketoprofen and diclofenac showed much higher rate constants during O_3/UV treatment than those during O_3/H_2O_2 treatment, indicating that their degradation can be attributed to direct UV photodegradation rather than OH radicals.
- 4) From a comparison of degradation efficiency, defined as the ratio of the average rate constant (/sec) for all PPCPs to the O_3 consumption per reactor volume (mg/L), the highest degradation efficiency was obtained at an O_3 feed rate of 0.3 mg/L/min during O_3 treatment. In contrast, an O_3 feed rate of 0.15 mg/L/min produced optimum degradation efficiency during O_3/UV treatment. This result indicates that the O_3 dose required for PPCP degradation by O_3 can be reduced by combining it with UV.
- 5) PPCP degradation by O₃ was promoted by adding H₂O₂ during the O₃ treatment. However, when a high initial H₂O₂ concentration was added during the O₃ treatment, formed OH radicals were likely to be scavenged by excess H₂O₂, leading to low PPCP degradation. Therefore, it is important to determine the appropriate H₂O₂ dosage during O₃ treatment to improve PPCP degradation by adding H₂O₂ during O₃ treatment.

Acknowledgments

This study was funded by the Japan Science and Technology Agency with partial funding by the Korea Institute of Construction Technology.

References

- 1. Staehelin J, Hoigne J. Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions. *Environ. Sci. Technol.* 1985;19:1206-1213.
- Langlais B, Reckhow DA, Brink DR, American Water Works Association Research Foundation, Compagnie générale des eaux. Ozone in water treatment: application and engineering: cooperative research report. Chelsea: Lewis Publishers; 1991.
- 3. Jørgensen SE, Halling-Sørensen B. Drugs in the environment. *Chemosphere* 2000;40:691-699.
- Andreozzi R, Caprio V, Marotta R, Radovnikovic A. Ozonation and H₂O₂/UV treatment of clofibric acid in water: a kinetic investigation. *J. Hazard. Mater.* 2003;103:233-246.
- Huber MM, Canonica S, Park GY, von Gunten U. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. *Environ. Sci. Technol.* 2003;37:1016-1024.
- 6. Oh BS, Jang HY, Hwang TM, Kang JW. Role of ozone for re-

ducing fouling due to pharmaceuticals in MF (microfiltration) process. *J. Membr. Sci.* 2007;289:178-186.

- Dantas RF, Canterino M, Marotta R, Sans C, Esplugas S, Andreozzi R. Bezafibrate removal by means of ozonation: primary intermediates, kinetics, and toxicity assessment. *Water Res.* 2007;41:2525-2532.
- Nakada N, Komori K, Suzuki Y, Konishi C, Houwa I, Tanaka H. Occurrence of 70 pharmaceutical and personal care products in Tone River basin in Japan. *Water Sci. Technol.* 2007;56:133-140.
- 9. Okuda T, Kobayashi Y, Nagao R, et al. Removal efficiency of 66 pharmaceuticals during wastewater treatment process in Japan. *Water Sci. Technol.* 2008;57:65-71.
- 10. Kim I, Tanaka H. Photodegradation characteristics of PPCPs in water with UV treatment. *Environ. Int.* 2009;35:793-802.
- 11. Hoigné J, Bader H. Rate constants of reactions of ozone with organic and inorganic compounds in water. I. Non-dissociating organic compounds. *Water Res.* 1983;17:173-183.
- 12. Buffle MO. Mechanistic investigation of the initial phase of ozone decomposition in drinking water and wastewater: impact on the oxidation of emerging contaminants, disinfection and by-products formation [dissertation]. Zuerich: Eidgenoessische Technische Hochschule Zuerich; 2006.
- von Gunten U. Ozonation of drinking water. Part I. Oxidation kinetics and product formation. *Water Res.* 2003;37:1443-1467.