• Title/Summary/Keyword: Phanerochaete chrysosporium

Search Result 65, Processing Time 0.028 seconds

Cultivation of Phanerochaete chrysosporium and Lignin Peroxidase Activity

  • Kim, Yeong-Kwan;Kim, Gieun;Jeong, Myoung-Sun
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.420-424
    • /
    • 1996
  • Effects of exogenous veratryl alcohol addition on the growth of basidiomycete Phanerochaete chrysosporium ME-446 and the induction of lignin peroxidase activity were investigated in this study. The organism was grown in ligninolytic (low-nitrogen) culture conditions in which extracellular enzymes are produced. Analyses showed that a statistically significant decrease of cell growth was associated with the veratryl alcohol addition. The effect of veratryl alcohol addition on LiP activity was nearly instantaneous and this effect diminished with culture aging. The extent of this effect was different depending on the time of addition, which led to a speculation that there might be some other effector species which played a role in regulation of lignin peroxidase activity.

  • PDF

Combined Treatment of Livestock Wastewater with Sewage Using Phanerochaete chrysosporium PSBL-1 (Phanerochaete chrysosporium PSBL-1을 이용한 축산폐수와 하수의 연계처리)

  • Lee, Soon-Young;Cho, Hong-Sik;Won, Chan-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.286-291
    • /
    • 2006
  • We studied possibility of mixing treatment of livestock wastewater and sewage using Phanerochaete chrysosporium PSBL-1. Our study showed that 97.6% of SS and 95% of T-P removal efficiency was achieved when 2 mL BF02(a coagulant) and 100 mL C-210EL(a cationic polymer) were added to the mixture(2:1, v/v) of livestock wastewater and sewage. We studied treatment characteristic of Phanerochaete chrysosporium PSBL-1, after were mixed pretreated wastewater and sewage by dillution ten times about livestock wastewater. The removal efficiency of NBDCOD(non-biodegradable COD), $NH_3-N$ and T-N was increased according to increase of pH. That is, T-N concentration of effluent was satisfied 60 mg/L by drain water waterqulity standard of livestock wastewater public treatment facilities with 35 mg/L from a lapse of five days at pH 6.7, 51 mg/L from a lapse of three days at pH 8 and 33 mg/L from a lapse of one day at pH 10. Moreover $COD_{Mn}$ concentration of effluent was satisfied 40 mg/L by drain water waterqulity standard of livestock wastewater public treatment facilities after a laps of one day at all pH. Organics and nitrogen concentrations of effluent were higher case with addition of V.A.(veratryl alcohol) than case without addition of V.A.(veratryl alcohol). $COD_{Mn}$ concentration of effluent satisfied drain water qulity standard of livestock wastewater public treatment facilities from a lapse of one day, when C/N rate(3:1) of influent was not controled. T-N satisfied that from a lapse of two days, when C/N rate was controled with $4{\sim}6$.

산소 의존도가 낮은 Phanerochaete chrysosporium YU을 이용한 lignin peroxidase생산

  • Kim, Eun-Jeong;Gwon, Sin;Ryu, Won-Ryul;Jo, Mu-Hwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.619-620
    • /
    • 2001
  • Lignin peroxidase was produced by free cells of Phanerochaete chrysosporium YU in shaking-flask batch cuture. Without aerating, the maximum activity was 785U/L. As nitrogen source, ammonium tartrate was used for LiP production and 0.02% ammonium tartrate concentration showed the highest potential for LiP prodution.

  • PDF

Estrogenic Reduction of Styrene Monomer Degraded by Phanerochaete chrysosporium KFRI 20742

  • Lee Jae-Won;Lee Soo-Min;Hong Eui-Ju;Jeung Eui-Bae;Kang Ha-Young;Kim Myung-Kil;Choi In-Gyu
    • Journal of Microbiology
    • /
    • v.44 no.2
    • /
    • pp.177-184
    • /
    • 2006
  • The characteristic biodegradation of monomeric styrene by Phanerochaete chrysosporium KFRI 20742, Trametes versicolor KFRI 20251 and Daldinia concentrica KFRI 40-1 was carried out to examine the resistance, its degradation efficiency and metabolites analysis. The estrogenic reduction effect of styrene by the fungi was also evaluated. The mycelium growth of fungi differentiated depending on the concentration levels of styrene. Additionally P. chrysosporium KFRI 20742 showed superior mycelium growth at less than 200 mg/l, while D. concentrica KFRI 40-1 was more than 200 mg/l. The degradation efficiency reached 99 % during one day of incubation for all the fungi. Both manganese-dependent peroxidase and laccase activities in liquid medium were the highest at the initial stage of incubation, whereas the lowest was after the addition of styrene. However, both activities were gradually recovered after. The major metabolites of styrene by P. chrysosporium KFRI 20742 were 2-phenyl ethanol, benzoic acid, cyclohexadiene-1,4-dione, butanol and succinic acid. From one to seven days of incubating the fungi, the expression of pS2 mRNA widely known as an estrogen response gene was decreased down to the level of baseline after one day. Also, the estrogenic effect of styrene completely disappeared after treatment with supernatant of P. chrysosporium KFRI 20742 from one week of culture down to the levels of vehicle.

Simultaneous Saccharification and Fermentation of Ground Corn Stover for the Production of Fuel Ethanol Using Phanerochaete chrysosporium, Gloeophyllum trabeum, Saccharomyces cerevisiae, and Escherichia coli K011

  • Vincent, Micky;Pometto III, Anthony L.;Leeuwen, J. (Hans) Van
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.7
    • /
    • pp.703-710
    • /
    • 2011
  • Enzymatic saccharification of corn stover using Phanerochaete chrysosporium and Gloeophyllum trabeum and subsequent fermentation of the saccharification products to ethanol by Saccharomyces cerevisiae and Escherichia coli K011 were achieved. Prior to simultaneous saccharification and fermentation (SSF) for ethanol production, solid-state fermentation was performed for four days on ground corn stover using either P. chrysosporium or G. trabeum to induce in situ cellulase production. During SSF with S. cerevisiae or E. coli, ethanol production was the highest on day 4 for all samples. For corn stover treated with P. chrysosporium, the conversion to ethanol was 2.29 g/100 g corn stover with S. cerevisiae as the fermenting organism, whereas for the sample inoculated with E. coli K011, the ethanol production was 4.14 g/100 g corn stover. Corn stover treated with G. trabeum showed a conversion 1.90 and 4.79 g/100 g corn stover with S. cerevisiae and E. coli K011 as the fermenting organisms, respectively. Other fermentation co-products, such as acetic acid and lactic acid, were also monitored. Acetic acid production ranged between 0.45 and 0.78 g/100 g corn stover, while no lactic acid production was detected throughout the 5 days of SSF. The results of our experiment suggest that it is possible to perform SSF of corn stover using P. chrysosporium, G. trabeum, S. cerevisiae and E. coli K011 for the production of fuel ethanol.

Treatment and Attachment Characteristics of Biofilm of Phanerochaete chrysosporium PSBL-1 in Wastewater (Phanerochaete chrysosporium PSBL-1 생물막을 이용한 오.폐수 처리 및 부착특성)

  • Lee, Soon-Young;Kang, Ki-Cheol;Won, Chan-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.3
    • /
    • pp.271-277
    • /
    • 2008
  • The biofilm of white-rot fungi fully exposed in atmosphere are that operation is easy, management cost and energy waste is low. To develop biofilm of white-rot fungi fully exposed in atmosphere, basic test are as follows. To select most effective microoganism species, investigated treatment characteristics of wastewater containing non-biodegradable material for three species of white-rot fungi(Phanerochaete chrysosporium PSBL-1, Phanerochaete chrysosporium KCTC 6147, Trametes sp. KFCC 10941) and activated sludge. And then investigated attached and detached biomass of selected white-rot fungi species on HBC ring surface. Among the three strains tested, P. chrysosporium PSBL-1 and P. chrysosporium KCTC 6147 showed higher efficiency for organics removal than Trametes sp. KFCC 10941, and P. chrysosporium PSBL-1 showed higher efficiency for nitrogen removal than P. chrysosporium KCTC 6147 and Trametes sp. KFCC 10941. Respectively, 51$\sim$59.8%, 57.5$\sim$60.3% of NBDCOD was removed for P. chrysosporium PSBL-1 and P. chrysosporium 6147 in pH 3.5$\sim$5.5. TN removal efficiency showed 39.3$\sim$85.3%, 3.4$\sim$7.6% for P. chrysosporium PSBL-1 and P. chrysosporium 6147 in pH 4.5$\sim$11.5 respectively. Considered that white-rot fungi remove organism and nitrogen simultaneously, the microorganism selected white-rot fungi P. chrysosporium PSBL-1. White-rot fungi P. chrysosporium PSBL-1 attached on HBC ring surface 4,538 mg/L, 4,546 mg/L, 4,531 mg/L after 5 minutes, 4,575 mg/L, 4,573 mg/L, 4,568 mg/L after 10 minutes from initial MLSS 4,600 mg/L in pH 4, 7 and 10 respectively. Also detached biomass is negligible from right after attachment to 10 day in pH 4, 7 and 10.

Biodegradation of 2,4,5-Trichlorophenol Using Cell-Free Culture Broths of Phanerochaete chrysosporium

  • Choi, Sueh-Yung;Moon, Seung-Hyeon;Lee, Jae-Suk;Gu, Man-Bock
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.6
    • /
    • pp.759-763
    • /
    • 2000
  • Cell-free culture broth of Phanerochaete chrysosporium has been adopted to biologically degrade 2,4,5-trichlorophenol. Two different medium compositions of nitrogen-sufficient and nitrogen-limited were compared for their distribution of isozymes, activity of lignin peroxidase, and production of oxalate. The two different culture broths were tested for their ability to degrade 2,4,5-trichlorophenol, and the biodegradation efficiency was estimated in terms of the disappearance of 2,4,5-trichlorophenol. The degradation efficiency for the nitrogen-limited culture broth was higher than that of the nitrogen-sufficient culture broth, since the nitrogen-limited culture broth induced lignin peroxidases (LiPs) and manganese peroxidases (MnPs), and contained sufficient oxalate for producing necessary radicals. Finally, the possible mechanism of 2,4,5-CP degradation using the nitrogen-limited culture broth was proposed.

  • PDF

Comparison of ImmDbilization Techniques Using Phanerochaete chrysosporium for the Treatment of Pulp Waste Effluent (생물학적 펄프 파수처리를 위한 Phanerochaete chrnosporium의 고정화 방법 비교)

  • 유인상
    • KSBB Journal
    • /
    • v.8 no.4
    • /
    • pp.351-357
    • /
    • 1993
  • Three immobilization techniques and free cell system were tested to determine the most effective technique for the treatment of pulp waste effluent. The tests were conducted using Phanerochaete chrysosporium as a biocatalyst in a process designed to treat pulp waste effluent. The results show that Ca-alginate gel was the best immobilization material. The chosen material improved the stability and increased the removal efficiency of the system. The experiment using the chosen material was mom- bored for 400 hours with no significant changes in the state of the fungus. Common problems with other immobilization materials and free cell system were oxygen transfer resistance caused by air channelling and clogging in the bioreactor.

  • PDF

Biodegradation of 4,5,6-Trichloroguaiacol by White Rot Fungi, Phanerochaete chrysosporium, Trametes versicolor, and Inonotus cuticularis (수질분해균(水質分解菌)에 의한 4,5,6-Trichloroguaiacol의 미생물분해(微生物分解))

  • Ahn, Sye-Hee;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.63-72
    • /
    • 1998
  • In order to evaluate the biodegradability and mechanism of 4,5,6-trichloroguaiacol (TCG) produced from bleaching process in pulp mill by Phanerochaete chrysosporium, Trametes versicolor, and Inonotus cuticularis, changes in TCG and its metabolites during biodegradation were analyzed by HPLC, and GC/MS spectrometry. By three fungi, the maximum biodegradability against TCG were very quickly reached, compared with other chlorinated aromatic compounds such as PCP. Within 24 hrs, T versicolor indicated up to 95% of TCG removal rate, and P. chrysosporium and I. cuticularis also showed more than 80%, and 90%, respectively. Particularly, in case of T. versicolor, the removal rate of TCG after 1 hr. incubation was reached to approximately 90%, implying very rapid metabolization of TCG. However, by analyzing the filtrates extracted from TCG containing culture by GC/MS, the major metabolites at initial stage of biodegradation were dimers, indicating that the added TCG monomers were quickly polymerized. The others were trichloroveratrole, dichloroguaiacol, and trichlorobenzoic acid, suggesting that TCG may be biodegraded by several sequential reactions such as polymerization, oxidation, methylation, dechlorination, and hydroxylation. In other experiments, the extracellular fluid which did not contain any fungal mycelia was used to evaluate the effect of mycelia on TCG biodegradation. The extracellular fluid of T. versicolor also biodegraded TCG up to 90% within 24hrs, but those of P. chrysosporium and I. cuticularis did not show any good biodegradability. T versicolor showed the highest value of laccase, and other two fungi indicated a little activity of lignin peroxidase (LiP) and manganese peroxidase (MnP). In addition, the laccase activity of T. versicolor was very linearly proportional to the removal rate of TCG during incubation, in other words, showing the induction effect against TCG. Consequently, the biodegradation of TCG was very dependent upon the activity of laccase.

  • PDF