• Title/Summary/Keyword: Phage display

Search Result 80, Processing Time 0.022 seconds

Production of a Recombinant Anti-Human CD4 Single-Chain Variable-Fragment Antibody Using Phage Display Technology and Its Expression in Escherichia coli

  • Babaei, Arash;Zarkesh-Esfahani, Sayyed Hamid;Gharagozloo, Marjan
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.5
    • /
    • pp.529-535
    • /
    • 2011
  • Single-chain variable fragment (scFv) is a fusion protein of the variable regions of the heavy (VH) and light (VL) chains of immunoglobulin, connected with a short linker peptide of 10 to about 20 amino acids. In this study, the scFv of a monoclonal antibody against the third domain of human CD4 was cloned from OKT4 hybridoma cells using the phage display technique and produced in E. coli. The expression, production, and purification of anti-CD4 scFv were tested using SDS-PAGE and Western blot, and the specificity of anti-CD4 scFv was examined using ELISA. A 31 kDa recombinant anti-CD4 scFv was expressed and produced in bacteria, which was confirmed by SDS-PAGE and Western blot assays. Sequence analysis proved the ScFv structure of the construct. It was able to bind to CD4 in quality ELISA assay. The canonical structure of anti-CD4 scFv antibody was obtained using the SWISS_MODEL bioinformatics tool for comparing with the scFv general structure. To the best of our knowledge, this is the first report for generating scFv against human CD4 antigen. Engineered anti-CD4 scFv could be used in immunological studies, including fluorochrome conjugation, bispecific antibody production, bifunctional protein synthesis, and other genetic engineering manipulations. Since the binding site of our product is domain 3 (D3) of the CD4 molecule and different from the CD4 immunological main domain, including D1 and D2, further studies are needed to evaluate the anti-CD4 scFv potential for diagnostic and therapeutic applications.

Selection of Skin-Penetrating Peptide Using Phage Display (파지 디스플레이를 이용한 피부 투과 기능성 펩타이드의 개발)

  • Lee, Seol-Hoon;Kang, Nae Gyu;Lee, Sanghwa
    • YAKHAK HOEJI
    • /
    • v.57 no.2
    • /
    • pp.125-131
    • /
    • 2013
  • Biologically active peptides, including growth factors and cytokines, participate in various biological processes in human skin. They could provide a great advantage of maintaining healthy skin. Many peptide growth factors like epidermal growth factor (EGF) and human growth hormone (hGH) have been used in cosmetic formulations. The delivery of peptide growth factors across the Stratum corneum, however, seems not sufficient because of their physical properties such as high molecular weight and hydrophilicity. So increasing the penetration of growth factors of interest into skin would be a major concern for ensuring their maximum biological efficacy. In this study, we have identified several skin penetration-enhancing peptides which facilitate delivery of growth factors, when fused at N-terminus of the target protein, into skin. For efficient and rapid screening, we constructed a skin-penetrating assay system using Franz cell and porcine skin. Next, we carried out phage display screening using M-13 bacteriophage with random 12 -amino acid library on its coat protein P3 on that system. After several selection rounds, peptide sequences facilitate the penetration of phages through the porcine skin were identified from a large population of phages. We found that phages with the most potent peptide (S3-2, NGSLNTHLAPIL) could penetrate the porcine skin eight times more than those with control peptide (12 mino acids scrambled peptide). Furthermore, growth factors conjugated with S3-2 peptide penetrate porcine skin three to five times efficiently than non-conjugated growth factors. In conclusion, our data shows that the skin penetration-enhancing peptide we have characterized could increase the delivery of growth factors and is useful for cosmeceutical application.

Application of Nanoparticles for Materials Recognition Using Peptide Phage Display Technique - Part II: Magnetic Bio-panning Using Fe3O4 Nanoparticles (Peptide phage display 기술을 이용한 나노입자의 materials recognition 응용 - Part II: Fe3O4 나노입자를 이용한 magnetic bio-panning)

  • Lee, Chang-Woo;Kim, Min-Jung;Standaert, R.;Kim, Seyeon;Owens, E.;Yan, Jun;Choa, Yong-Ho;Doktycz, M.;Lee, Jai-Sung
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.3
    • /
    • pp.131-134
    • /
    • 2008
  • The magnetism of$Fe_3O_4$ nanoparticles was applied to magnetic bio-panning process for finding specific sequences against $Fe_3O_4$ crystal phase. Vibrating sample magnetometer (VSM) measurement showed that the coercivity of 30 Oe and the saturation magnetization of 55 emu/g were sufficient in controlling particle movement and magnetizing particles in the media, respectively. This ferrimagnetism of nanoparticles practically enhanced panning efficiency by exaggerating centrifuge step and preventing particle loss. Sequencing results showed that histidine which was commonly found in peptide sequences played an important role in the binding onto $Fe_3O_4$ nanoparticle surface. However, various possible motifs were also observed from several neighboring amino acids of histidine.

Screening of Peptides Bound to Anthrax Protective Antigen by Phage Display

  • Kim, Joung-Mok;Park, Hye-Yeon;Choi, Kyoung-Jae;Jung, Hoe-Il;Han, Sung-Hwan;Lee, Jae-Seong;Park, Joon-Shik;Yoon, Moon-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1784-1790
    • /
    • 2006
  • Bacillus anthracis is a causative agent of anthrax. Anthrax toxins are composed of a protective antigen (PA), lethal factor (LF), and edema factor (EF), in which the PA is a central mediator for the delivery of the two enzymatic moieties LF and EF. Therefore, the PA has been an attractive target in the prevention and vaccinization for anthrax toxin. Recently, it has been reported that the molecule consisting of multiple copies of PA-binding peptide, covalently linked to a flexible polymer backbone, blocked intoxification of anthrax toxin in an animal model. In the present study, we have screened novel diverse peptides that bind to PA with a high affinity (picomolar range) from an M13 peptide display library and characterized the binding regions of the peptides. Our works provide a basis to develop novel potent inhibitors or diagnostic probes with a diverse polyvalence.

A Novel Screening Strategy for Salt-resistant Alpha-helical Antimicrobial Peptides from a Phage Display Library (Phage Display Library를 이용한 Salt-Resistant Alpha-Helical 항균 펩타이드의 새로운 탐색방법)

  • Park, Ju-Hee;Han, Ok-Kyung;Lee, Baek-Rak;Kim, Jeong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.4
    • /
    • pp.278-284
    • /
    • 2007
  • A novel screening strategy for salt-resistant antimicrobial peptides from a M13 peptide library was developed. Fusion of MSI-344, a magainin derivative and indolicidin to pIII coat proteins did not significantly affect viability of the recombinant phages, which indicated that the pIII could neutralize toxicity of the antimicrobial peptides and therefore it is possible to construct antimicrobial peptide library in Escherichia coli. On the basis of the conserved sequence of ${\alpha}$-helical antimicrobial peptides, a semi-combinatorial peptide library was constructed in which the peptides were displayed by pIII. To remove hemolytic activity from the library, the phages bound to red blood cells were removed, and the subtracted phage library was screened for binding to target bacteria Pseudomonas aeruginosa and Staphylococcus aureus under high salt concentrations. The screened peptides showed relatively low antimicrobial activity against the target bacteria. However, antimicrobial activities of the screened peptides P06 and S18 were not affected by the cation concentrations of 150 mM $Na^+$, 2 mM $Mg^{2+}$ and 2 mM $Ca^{2+}$ without significant hemolytic activity. This screening strategy that is based on binding capacity to target cells provides new potential to develop salt-tolerant antimicrobial peptides.

Novel Phage Display-Derived H5N1-Specific scFvs with Potential Use in Rapid Avian Flu Diagnosis

  • Wu, Jie;Zeng, Xian-Qiao;Zhang, Hong-Bin;Ni, Han-Zhong;Pei, Lei;Zou, Li-Rong;Liang, Li-Jun;Zhang, Xin;Lin, Jin-Yan;Ke, Chang-Wen
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.5
    • /
    • pp.704-713
    • /
    • 2014
  • The highly pathogenic avian influenza A (HPAI) viruses of the H5N1 subtype infect poultry and have also been spreading to humans. Although new antiviral drugs and vaccinations can be effective, rapid detection would be more efficient to control the outbreak of infections. In this study, a phage-display library was applied to select antibody fragments for HPAI strain A/Hubei/1/2010. As a result, three clones were selected and sequenced. A hemagglutinin inhibition assay of the three scFvs revealed that none exhibited hemagglutination inhibition activity towards the H5N1 virus, yet they showed a higher binding affinity for several HPAI H5N1 strains compared with other influenza viruses. An ELISA confirmed that the HA protein was the target of the scFvs, and the results of a protein structure simulation showed that all the selected scFvs bound to the HA2 subunit of the HA protein. In conclusion, the three selected scFVs could be useful for developing a specific detection tool for the surveillance of HPAI epidemic strains.