• Title/Summary/Keyword: Petroleum diesel

Search Result 250, Processing Time 0.024 seconds

Improvement of Low Temperature Fuel Characteristics by Pour Point Depressant (유동점 강하제에 의한 바이오디젤 저온특성 향상)

  • Lim, Young-Kwan;Lee, Joung-Min;Jeong, Choong-Sub;Kim, Jong-Ryeol;Yim, Eui-Soon
    • Tribology and Lubricants
    • /
    • v.27 no.2
    • /
    • pp.109-114
    • /
    • 2011
  • The low temperature characteristics of automotive diesel have been legally regulated due to the fact that solid particle in diesel at low temperature can cause severe problems in the vehicle. The biodiesel is well known for eco-friendly fuel, which is one of the most popular alternative petrodiesel, but it is easy to solidified at low temperature than petrodiesel at low temperature. For that reason, in this study, we investigated the low temperature fuel characteristics of diesel-biodiesel blends which were prepared to mix 6 different kinds of biodiesel to winter diesel fuel, respectively. Also, we confirmed to improve low temperature fuel characteristics by pour point depressant.

Feasibility Study of Using Wood Pyrolysis Oil in a Dual-injection Diesel Engine (이중분사기가 장착된 디젤 엔진에서 목질계 열분해유의 적용 가능성에 관한 연구)

  • Lee, Seokhwan;Jang, Youngun;Kim, Hoseung;Kim, Taeyoung;Kang, Kernyong;Lim, Jonghan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.1-9
    • /
    • 2014
  • The vast stores of biomass available in the worldwide have the potential to displace significant amounts of petroleum fuels. Fast pyrolysis of biomass is one of several paths by which we can convert biomass to higher value products. The wood pyrolysis oil (WPO) has been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of WPO in a diesel engine requires modifications due to low energy density, high water contents, high acidity, high viscosity, and low cetane number of the WPO. One possible method by which the shortcomings may be circumvented is to co-fire WPO with other petroleum fuels. WPO has poor miscibility with light petroleum fuel oils; the most suitable candidates fuels for direct fuel mixing are methanol or ethanol. Early mixing with methanol or ethanol has the added benefit of significantly improving the storage and handling properties of the WPO. For separate injection co-firing, a WPO-ethanol blended fuel can be fired through diesel pilot injection in a dual-injection dieel engine. In this study, the performance and emission characteristics of a dual-injection diesel engine fuelled with diesel (pilot injection) and WPO-ethanol blend (main injection) were experimentally investigated. Results showed that although stable engine operation was possible with separate injection co-firing, the fuel conversion efficiency was slightly decreased due to high water contents of WPO compare to diesel combustion.

Performance and Emission Studies in a DI Diesel Engine Using Wood Pyrolysis Oil-Bio Diesel Emulsion (목질계 열분해유-바이오 디젤 유상액을 사용하는 직접분사식 디젤 엔진의 엔진성능 및 배기특성에 관한 연구)

  • Lee, Seokhwan
    • Journal of ILASS-Korea
    • /
    • v.17 no.4
    • /
    • pp.197-204
    • /
    • 2012
  • The vast stores of biomass available in the worldwide have the potential to displace significant amounts of fuels that are currently derived from petroleum sources. Fast pyrolysis of biomass is one of possible paths by which we can convert biomass to higher value products. The wood pyrolysis oil (WPO), also known as the bio crude oil (BCO), has been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of WPO in a diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the WPO. One of the easiest way to adopt WPO to diesel engine without modifications is emulsification of WPO with diesel or bio diesel. In this study, a DI diesel engine operated with diesel, bio diesel (BD), WPO/BD emulsion was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine fuelled by WPO/BD emulsion were examined. Results showed that stable engine operation was possible with emulsion and engine output power was comparable to diesel and bio diesel operation.

Performance and Emission Studies in a DI Diesel Engine Fuelled with Diesel-Pyrolysis Oil Emulsion (디젤-열분해유 유상액을 사용하는 직접분사식 디젤 엔진의 엔진성능 및 배기특성에 관한 연구)

  • Lee, Seokhwan;Kim, Hoseung;Kim, Taeyoung;Woo, Sejong;Kang, Kernyong
    • Journal of ILASS-Korea
    • /
    • v.19 no.2
    • /
    • pp.55-63
    • /
    • 2014
  • Pyrolysis oil (PO), also known as Bio crude oil (BCO), has the potential to displace significant amounts of fuels that are currently derived from petroleum sources. PO has been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of PO in a diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the PO. One of the easiest way to adopt PO to diesel engine without modifications is emulsification of PO with the fuels that has higher cetane number. However, PO that has high amount of polar chemicals is immiscible with non polar hydrocarbons of diesel. Thus, to stabilize a homogeneous phase of diesel-PO blends, a proper surfactant should be used. In this study, a DI diesel engine operated with diesel and diesel-PO emulsions was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine fuelled by diesel-PO emulsions were examined. Results showed that stable engine operation was possible with the emulsions and engine output power was comparable to diesel operation.

Qualitative analysis of some kinds of petroleum (thinner, gasoline, kerosene, and diesel oil) by gas chromatography (기체 크로마토그래피를 이용한 몇 가지 석유류(시너, 휘발유, 등유 및 경유)의 정성분석)

  • Hyun, Joon-Ho;Park, Jong-Heon;Kim, Sang-Soo;Choi, Jong-Moon
    • Analytical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.512-518
    • /
    • 2006
  • The evidence containing some kind of petroleum at the fire spot was analyzed by gas chromatography to identify a fire's sources. To extract some petroleum from fire evidence, 10.0 mL of n-hexane was added in this solution, and it was shaken for 30 minutes. To identify a kind of petroleum in fire evidence, the prepared n-hexane solution was injected and analyzed in the gas chromatograph. The chromatogram of sample was different from those of thinner and gasoline that have low boiling point, and shown different peak pattern to heating and boiler oils. But it was similar to the chromatogram of diesel oil. After small amount of diesel oil was added to the sample, the area of characteristic peaks was increased more than those of raw sample. From the results, the kind of petroleum in the fire evidence was diesel oil.

A Study on the Fuel Characteristics of Hydrotreated Biodiesel(HBD) for Alternative Diesel Fuel (경유 대체연료로서 수첨 바이오디젤의 연료적 특성 연구)

  • Kim, Jae-Kon;Jeon, Cheol-Hwan;Yim, Eui-Soon;Jung, Choong-Sub
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.508-516
    • /
    • 2011
  • Hydrotreated biodiesel(HBD) is paraffinic bio-based liquid, with the chemical structure $C_nH_{2n+2}$, originating from vegetable oil(the process can also be applied to animal fat). The oil or fat is treated in a number of process, the most important being hydrogenation, in order to create a bio-based liquid diesel fuel. During the hydrogenation, oxygen is removed from the triglyceride and converted into water. Propane is formed as a by product and can be combusted and used for energy production. HBD can be used in conventional diesel engines, pure or blended with conventional diesel, due to its similar physical properties to diesel. This study reports the quality characteristics with chemical and physical properties as an alternative diesel fuel. Especially, HBD showed higher cetane value and number than FAME, and it is consisted of $C_{15}$ - $C_{18}$ n-paraffinic compounds. We also describes quality characteristics of HBD blends(2, 5, 10, 20, 30, 40, 50 vol%) in automotive diesel. HBD blends(max. 20 vol%) were the limit by the Korean specification due to poor low temperature characteristics.

Determination of Correlation between Cetane Number, Derived Cetane Number and Cetane Index for Diesel Fuel (경유연료의 세탄가, 유도세탄가 및 세탄지수의 상관관계 분석)

  • Jeon, Hwayeon;Kim, Ji Yeon;Kim, Shin;Yim, Eui Soon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1134-1144
    • /
    • 2018
  • Cetane Number is one of the quality standard for diesel, which assesses the compatibility of ignition quality of diesel compression in diesel engines. Cetane number must be upper 52 to keep the recent diesel quality standards. It is known that if cetane number is high, there will be shorter ignition delay periods than being lower. On the other hands, if cetane number is too high that exceeds the quality standard, there will increase the air pollution and decrease of the fuel efficiency because incomplete combustion. In South Korea, various methods are being used to measure the cetane number such as cetane number that used CFR engine, cetane index from calculate density and distillation temperature and derived cetane number to make up for CFR engine that ignition delay in high temperature is implemented. In this study will be conducted by collecting the diesel from the major oil companies, and try to analyze the correlation between the different methods of cetane number with various factors. At the results of this study, it was shown that the cetane index is high then cetane engine and derived cetane number. therefore it will be necessary to additional research for out of cetane number quality standards.

Study on the Applicability Analysis of HPLC for Fuel Marker (Unimark 1494DB) in Petroleum Products (석유제품의 식별제(Unimark 1494DB) 분석을 위한 HPLC 적용가능성 분석 연구)

  • Hwang, In-ha;Youn, Ju-min;Doe, Jin-woo;Park, Tae-seong;Kang, Hyung-kyu;Ha, Jong-han;Na, Byung-gi
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.1076-1084
    • /
    • 2017
  • For analyzing the qualitative and quantitative analysis of fuel marker in petroleum products, the applicability of HPLC was studied. For the qualitative analysis of fuel marker in kerosene and automotive diesel, optimal analytical conditions(ratio of mobile phase solvent, flow rate, etc) in HPLC were selected and calibration curve for quantitative analysis of fuel marker was prepared based on the result of qualitative analysis. In particular, the correlation coefficient of calibration curve in kerosene and automotive diesel was shown to be 0.999 in a certain concentration range and it could be applied to the quantitative analysis. The results of analysis using the UV/Vis spectrometer, which is the current analysis method of fuel marker, were compared with the analysis results using the HPLC. The kerosene showed a low deviation of about 7 % and the automotive diesel showed a somewhat large deviation of about 20 %.

A Study on the oxidation characteristics of micro-algal bio diesel derived from Dunaliella tertiolecta LB999 (Dunaliella tertiolecta LB999 유래 바이오디젤의 산화특성 연구)

  • Lee, Don-Min;Lee, Mi-Eun;Ha, Jong-Han;Ryu, Jin-Young;Choi, Chang-Yong;Shim, Sang-Hyuk;Lim, Sang-Min;Lee, Choul-Gyun;Lee, Bong-Hee
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • Bio diesel has advantages to reduce GHG(Greenhouse Gas) compare with the fossil fuel by using oil comes from plant/animal sources and even waste such as used cook oil. The diversity of energy feeds brings the positive effects to secure the national energy mix. In this circumstance, micro-algae is one of the prospective source, though some technical barriers. We analyzed the bio diesel which was derived from Dunaliella tertiolecta LB999 through the BD100 quality specifications designated by the law. From that result, it is revealed that the oxidation stability is one of the properties to be improved. In order to find the reason for low oxidation stability, we analyzed the oxidation tendency of each FAME components through some methods(EN 14111, EN14112, EN16091). In this study, we could find the higher double bond FAME portion, the more oxidative property(C18:1${\ll}C18:3$) in bio diesel and main unsaturated FAME group is acted as the key component deciding the bio diesel's oxidation stability. It is proved experimentally that C18:3 FAME are oxidized easily under the modified accelerated oxidation test. We also figure out low molecular weight hydrocarbon and FAME were founded as a result of thermal degradation. Some alcohol and aldehydes were also made by FAME oxidation. In conclusion, it is necessary to find the way to improve the micro-algal bio diesel's oxidation stability.

Performance and Emission Characteristics of a Diesel Engine Operated with Wood Pyrolysis Oil (목질 열분해유를 사용하는 디젤엔진의 성능 및 배기특성에 관한 연구)

  • Lee, Seok-Hwan;Park, Jun-Hyuk;Choi, Young;Woo, Se-Jong;Kang, Kern-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.102-112
    • /
    • 2012
  • The vast stores of biomass available in the worldwide have the potential to displace significant amounts of fuels that are currently derived from petroleum sources. Fast pyrolysis of biomass is one of possible paths by which we can convert biomass to higher value products. The wood pyrolysis oil (WPO), also known as the bio crude oil (BCO), have been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of BCO in a diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the BCO. One of the easiest way to adopt BCO to diesel engine without modifications is emulsification of BCO with diesel and bio diesel. In this study, a diesel engine operated with diesel, bio diesel (BD), BCO/diesel, BCO/bio diesel emulsions was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine fuelled by BCO emulsions were examined. Results showed that stable engine operation was possible with emulsions and engine output power was comparable to diesel and bio diesel operation. However, in case of BCO/diesel emulsion operation, THC & CO emissions were increased due to the increased ignition delay and poor spray atomization and NOx & Soot were decreased due to the water and oxygen in the fuel. Long term validation of adopting BCO in diesel engine is still needed because the oil is acid, with consequent problems of corrosion and clogging especially in the injection system.