• Title/Summary/Keyword: Petroleum contaminated soil

Search Result 220, Processing Time 0.023 seconds

Assessment of Biochemical Efficiency for the Reduction of Heavy Metal and Oil Contaminants in Contaminated Soils (토양내 중금속 및 유류 오염농도 저감을 위한 생화학적 기작의 효율성 평가)

  • Kim, Man-Il;Jeong, Gyo-Cheol;Kim, Eul-Young
    • The Journal of Engineering Geology
    • /
    • v.22 no.3
    • /
    • pp.253-262
    • /
    • 2012
  • With the aim of remediating soils contaminated by heavy metals and oil, experimental research was conducted to evaluate the optimal design factors for remediation in terms of efficient soil washing methods and processes. The experiments employed absorptiometric analysis and gas chromatography methods to reduce the concentration of heavy metals such as cooper (Cu), lead (Pb), and zinc (Zn), and total petroleum hydrocarbons (TPH) in contaminated soils. The experimental processes consisted of deciding on the washing solution, washing time, and dilution ratio for contaminated soils. A dissolution analysis of heavy metals was then performed by the addition of surfactant, based on the results of the decision experiments, and the injection processes of microbes and hydrogen peroxide were selected. The experimental results revealed that reduction effects in contaminated soils under the experimental conditions were most efficient with hydrochloric acid 0.1 mole, washing time 1 hour, and dilution ratio 1:3, individually. Additional reduction effects for heavy metals and TPH were found with the addition of a washing solution of 1% of surfactant. The addition of microbes and hydrogen peroxide caused a reduction in TPH concentration.

Effect of Surfactant Types on Washing of Diesel-contaminated Soil (디젤 오염 토양 세척시 계면활성제 종류의 영향)

  • Yang, Jung-Seok;Lee, You-Jin;Kim, Seong-Hye;Shin, Hyun-Jae;Yang, Ji-Won
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.3
    • /
    • pp.8-14
    • /
    • 2008
  • The effects of surfactant types and the ratio of nonionic and anionic surfactants on the washing of diesel contaminated soil were investigated. In batch tests, the nonionic surfactant, which has HLB within 12-13, showed a high diesel removal efficiency and Tergitol 15-S-7 (T15S7) with 20 g/L concentration exhibited the highest removal efficiency of 79-88% among the tested nonionic surfactants. Anionic surfactants, in general, showed lower removal efficiency than nonionic surfactants. In case of mixed surfactant system, the removal efficiency increased with nonionic surfactant concentration. With mixed surfactants of T15S7 and SDS as 3 : 1 ratio, diesel removal was enhanced to 76% with 10 g/L of the mixed surfactants. These results could be used in the selection of proper surfactants for remediation of diesel contaminated soils.

Treatment of Contaminated Groundwater Containing Petroleum and Suspended Solids Using DAF and Mixed Coagulation Processes (DAF와 혼화응집공정을 이용한 현탁성 고형물 함유 유류 오염 지하수 처리)

  • Lee, Chaeyoung;Jang, Yeongsu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.8
    • /
    • pp.25-32
    • /
    • 2010
  • Contamination of soil and groundwater by the compounds of hydrocarbon petroleum has been widely accepted as the main cause that harms the environments and health. To remove those pollutants, absorbing clothes, activated carbons, or oil-water separation devices with the gravity method are employed for treatment. However, those materials and devices cannot remove the emulsion pollutants despite of their efficiency for removing free products. Therefore, we investigated the problems which occur during the groundwater treatment for the highly concentrated suspended solid particles, which can be resulted from excavation, and to propose methods to remove TPH(Total Petroleum Hydrocarbon). After coagulation experiment with high molecular polymers, the concentration of SS(Suspended Solids) and COD(Chemical Oxygen Demand) turned to satisfy the groundwater quality criteria within 5 minutes while the concentration of TPH failed to meet the water quality standard of effluent. Consequently, the water quality criteria for effluent could not be met by single DAF(Dissolved Air Flotation) process. However all water quality criteria could be satisfied after 20 minutes when coagulation reactions are carried out simultaneously in the DAF reactor.

Biodegradation of Diesel in Sea Water by Rhodococcus fascians Isolated from a Petroleum-contaminated Site (유류 오염 토양에서 분리된 Rhodococcus fascians를 이용한 해수에서의 디젤유의 분해)

  • Koo, Ja-Ryong;Moon, Jun-Hyung;Yun, Hyun-Shik
    • KSBB Journal
    • /
    • v.24 no.5
    • /
    • pp.453-457
    • /
    • 2009
  • Contamination of marine environment with hazardous and toxic chemicals is more common these days. Bioremediation is the application of microorganism or microbial processes to degrade environmental contaminant. Because of low water solubility and volatility of diesel, bioremediation is more efficient than physical and chemical methods. The objective of this study is biodegradation of diesel in sea water by using Rhodococcus fascians which is isolated petroleum-contaminated soil. R. fascians was cultured on sea water containing diesel to determine the diesel degradability. Changes in biodegradability of diesel with various inoculum sizes, diesel concentrations, initial pH, and culture temperature were analyzed by TPH analysis using gas chromatography. The inoculum size 2% was effective for biodegrdation of diesel in sea water by R. fascians. When diesel concentration was 5%, the growth of cell was inhibited by the toxicity of diesel. The optimal temperature and initial pH for degradation of diesel in sea water were $27^{\circ}C$ and pH 8.

Biodegradation of petroleum hydrocarbons by bacteria with surfactant producing capability and cell surface hydrophobicity (계면활성제 생성능과 세포 표면 소수성을 가진 세균 균주들에 의한 석유탄화수소의 생분해)

  • Kwon, Sun-Lul;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.53 no.4
    • /
    • pp.265-272
    • /
    • 2017
  • Some bacteria with different mechanisms for hydrocarbon degradation were isolated from oil-contaminated soils in Korea. Isolate Acinetobacter calcoaceticus SL1 showed biosurfactant- producing activity in oil-spreading test, and it exhibited a good emulsifying activity of 43.6 and 54.5% for diesel oil and n-hexane, respectively. It also has high cell surface hydrophobicity which can make it easily attaches to hydrocarbons and degrade them. It degraded 100% of 1,000 mg/L of n-octadecane and naphthalene, respectively in 3 days, 72.3% of 1,000 mg/L diesel oil in 7 days and 78.0% of 10,000 mg/L diesel oil in oil-contaminated soil during 28 days. Isolated strains Bacillus amyloliquefaciens S10 and B. subtilis GO9 can produce biosurfactant and formed 6.34 and 2.5 cm diameter of clear zones, respectively in oil-spreading test. Surface tension of their culture supernatant reduced from 74.6 to 34.4 and 33.3 mN/m, respectively during incubation, and critical micelle concentrations of culture supernatants were 2.0 and 5.9%, respectively. Consortium of A. calcoaceticus SL1 and B. amyloliquefaciens S10 degraded 77.8% of 10,000 mg/L diesel oil in 3 days, which indicated more efficient oil degradation than that by A. calcoaceticus SL1 alone. If these bacteria were applied together as a consortium to oil-contaminated sites, they may show a high removal rate of petroleum hydrocarbons.

Development of Low Temperature Thermal Desorption System and Remediation of Soil Contaminated with Petroleum Hydrocarbon (열순환식 저온열탈착 정화장치의 개발 및 유류오염 토양 현장 적용)

  • Kim, Guk-Jin;Lee, Sun-Hwa;Park, Kwang-Jin;Kim, Chi-Kyung;Lee, Cheol-Hyo;Kim, Do-Sun;Cho, Seok-Hee;Chang, Youn-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.4
    • /
    • pp.62-68
    • /
    • 2008
  • The Low Temperature Thermal Desorption (LTTD) System equipped with a soil transfer unit, a rotary kiln, RTO, cyclones and a bag filter etc. was developed. The LTTD system was designed to be economically operated using LPG as a fuel and recirculating the discharged gas from the LTTD system through RTO. For the performance test of LTTD system the soil contaminated with light and heavy oils (2,690 mg TPH/kg soil) and with particle sizes below 50 mm was fed into the rotary kiln of LTTD system at 7$m^3$/hr with retention time of 15 minutes. Operation temperatures of LTTD system for the removal of soil TPH were $567^{\circ}C$ and $692^{\circ}C$. The residual TPH after treatment was 46 mg/kg and 32mg/kg respectively at each temperature condition, which shows high TPH removal efficiencies of the developed LTTD as 98.3% and 98.9%.

Efficient Remediation of Petroleum Hydrocarbon-Contaminated Soils through Sequential Fenton Oxidation and Biological Treatment Processes (펜톤산화 및 생물학적 연속처리를 통한 유류오염토양의 효율적 처리)

  • Bae, Jae-Sang;Kim, Jong-Hyang;Choi, Jung-Hye;Ekpeghere, Kalu I.;Kim, Soo-Gon;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.47 no.4
    • /
    • pp.356-363
    • /
    • 2011
  • The accidental releases of total petroleum hydrocarbons (TPH) due to oil spills frequently ended up with soil and ground water pollution. TPH may be degraded through physicochemical and biological processes in the environment but with relatively slow rates. In this study an attempt has been made to develop an integrated chemical and biological treatment technology in order to establish an efficient and environment-friendly restoration technology for the TPH contaminated soils. A Fenton-like reaction was employed as a preceding chemical treatment process and a bioaugmentation process utilizing a diesel fuel degrader consortium was subsequently applied as a biological treatment process. An efficient chemical removal of TPH from soils occurred when the surfactant OP-10S (0.05%) and oxidants ($FeSO_4$ 4%, and $H_2O_2$ 5%) were used. Bioaugmentation of the degrader consortium into the soil slurry led to an increase in their population density at least two orders of magnitude, indicating a good survival of the degradative populations in the contaminated soils ($10^8-10^9$ CFU/g slurry). TPH removal efficiencies for the Fenton-treated soils increased by at least 57% when the soils were subjected to bioaugmentation of the degradative consortium. However, relatively lower TPH treatment efficiencies (79-83%) have been observed in the soils treated with Fenton and the degraders as opposed to the control (95%) that was left with no treatment. This appeared to be due to the presence of free radicals and other oxidative products generated during the Fenton treatment which might inhibit their degradation activity. The findings in this study will contribute to development of efficient bioremediation treatment technologies for TPH-contaminated soils and sediments in the environment.

Evaluation of Soil Flushing Column Test for Oil-contaminated Soil Treatment (유류오염토양 처리를 위한 컬럼식 토양세정기술 평가)

  • Kang, Hui-Cheon;Han, Byeong-Gi;Kim, Joung-Dae;Seo, Seung-Won;Shin, Chul-Ho;Park, Joon-Seok
    • Clean Technology
    • /
    • v.23 no.3
    • /
    • pp.302-307
    • /
    • 2017
  • This study was conducted to evaluate the feasibility of in situ soil flushing for TPH-contaminated soil remediation with column test. The soil texture of the soil was sand and the initial TPH concentration was $9,369mg\; kg^{-1}$. 0.1% Tween-80 was selected as surfactant solution. And the acrylic and the glass syringe columns were used as reactors. In the acrylic column test, 35% of the initial TPH was removed in 1 PV of flushing and approximately 40% in 5 PV and finally 7 PV showed about 60%. The glass column test showed 3 ~ 12% higher removal efficiency than that of acrylic test until 5 PV of flushing. However, there was no difference in TPH removal efficiency when 7 PV of surfactant was finally flushed. Both of alum only and alum+polymer mixed surfactants showed also the best coagulation efficiency in $150mg\;L^{-1}$ of concentraion. When Tween 80 was newly dissolved in 0.1% to the recovered solution after the coagulation treatment, the removal efficiency was increased from 32.0% to 41.0% in comparison to the new 0.1% Tween 80 solution without reuse by coagulation treatment.

Monitoring of Microbial Diversity and Activity During Bioremediation of Crude Oil-Contaminated Soil with Different Treatments

  • Baek, Kyung-Hwa;Yoon, Byung-Dae;Kim, Byung-Hyuk;Cho, Dae-Hyun;Lee, In-Sook;Oh, Hee-Mock;Kim, Hee-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.67-73
    • /
    • 2007
  • The present study compared the microbial diversity and activity during the application of various bioremediation processes to crude oil-contaminated soil. Five different treatments, including natural attenuation (NA), biostimulation (BS), biosurfactant addition (BE), bioaugmentation (BA), and a combined treatment (CT) of biostimulation, biosurfactant addition, and bioaugmentation, were used to analyze the degradation rate and microbial communities. After 120 days, the level of remaining hydrocarbons after all the treatments was similar, however, the highest rate (k) of total petroleum hydrocarbon (TPH) degradation was observed with the CT treatment (P<0.05). The total bacterial counts increased during the first 2 weeks with all the treatments, and then remained stable. The bacterial communities and alkane monooxygenase gene fragment, alkB, were compared by denaturing gradient gel electrophoresis (DGGE). The DGGE analyses of the BA and CT treatments, which included Nocardia sp. H17-1, revealed a simple dominant population structure, compared with the other treatments. The Shannon-Weaver diversity index (H') and Simpson dominance index (D), calculated from the DGGE profiles using 16S rDNA, showed considerable qualitative differences in the community structure before and after the bioremediation treatment as well as between treatment conditions.

Phylogenetic Analysis of Mycobacterium sp. C2-3 Degrading Polycyclic Aromatic Hydrocarbons

  • Lee, Il-Gyu;Han, Suk-Kyum;Go, You-Seak;Ahn, Tae-Young
    • Journal of Microbiology
    • /
    • v.39 no.4
    • /
    • pp.326-330
    • /
    • 2001
  • Mycobacterium sp. C2-3 was isolated from petroleum contaminated soil around an oil reservoir and identified by analysis of its 16S rRNA gene sequence, Strain C2-3 was able to use fluorene, phenan-threne, fluorathene and pyene as sole sources of carbon and energy, yet unable to geagrade naph-thalene, The strain was also able to use n-alkanes, such as hexadecane and heptadecane, and phenanthrene and pyrene, in particular, were degraded rapidly,. The phylogenetic data suggested that the isolate C2-3 is a thermosensitive, fast-growin strain of Mycobacterium sp.

  • PDF