• 제목/요약/키워드: Petroleum Consumption

Search Result 109, Processing Time 0.027 seconds

Using Different Method for petroleum Consumption Forecasting, Case Study: Tehran

  • Varahrami, Vida
    • East Asian Journal of Business Economics (EAJBE)
    • /
    • v.1 no.1
    • /
    • pp.17-21
    • /
    • 2013
  • Purpose: Forecasting of petroleum consumption is useful in planning and management of petroleum production and control of air pollution. Research Design, Data and Methodology: ARMA models, sometimes called Box-Jenkins models after the iterative Box-Jenkins methodology usually used to estimate them, are typically applied to auto correlated time series data. Results: Petroleum consumption modeling plays a role key in big urban air pollution planning and management. In this study three models as, MLFF, MLFF with GARCH (1,1) and ARMA(1,1), have been investigated to model the petroleum consumption forecasts. Certain standard statistical parameters were used to evaluate the performance of the models developed in this study. Based upon the results obtained in this study and the consequent comparative analysis, it has been found that the MLFF with GARCH (1,1) have better forecasting results.. Conclusions: Survey of data reveals that deposit of government policies in recent yeas, petroleum consumption rises in Tehran and unfortunately more petroleum use causes to air pollution and bad environmental problems.

A Study on The Performance and Fuel Economy of Diesel Vehicles According to Change in Fuel Properties (연료물성에 따른 경유 차량의 성능 및 에너지소비효율 연구)

  • Noh, Kyeong-Ha;Lee, Min-Ho;Kim, Ki-Ho;Lee, Jung-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.667-675
    • /
    • 2018
  • Increasing emissions regulations and demand of high-efficiency cars that travels a lot of distance with less fuel, there is growing interest in Energy Consumption Efficiency. Korean energy consumption efficiency compute combined Fuel Economy by driven city & highway driving mode and present final Energy Consumption Efficiency as using 5-cycle correction formula. Energy consumption efficiency is computed Carbon-balance-method, when used burning fuel play a key role in vehicle performance & Energy Consumption Efficiency. In Korea, vehicle fuel is circulate by Petroleum and Petroleum Alternative Business Act, there is property difference in quality standard because petroleum sector's refine method or type of crude oil. It does not appear a big difference according to fuel, because it sets steady quality standard, it may affect the performance of automobile. Thus, in research We purchase a few diesel fuel which circulated in the market in summer season though directly-managed-gas station by petroleum sector, resolve property each of fuel, we compute Fuel Economy each of them. We analyze into change depend on applying for property as nowadays utilizing Energy Consumption Efficiency calculating formula of gasoline and diesel fuel. As result, Density each of sample fuel has a maximum difference roughly 0.9%, net heat value each of sample fuel has difference 1.6%, result of current Energy Consumption Efficiency each of sample fuel has a difference roughly 1% at city drive mode, 1.4% at highway drive mode. Result of use gasoline calculator formula shows less 6% result than nowadays utilizing Energy Consumption Efficiency calculating formula, each of sample's Energy Consumption Efficiency shows maximum roughly 1.4% result in city & highway drive mode.

Petroleum Imports and Exchange Rate Volatility (원유수입과 환율변동성)

  • Mo, Soo-Won;Kim, Chang-Beom
    • Environmental and Resource Economics Review
    • /
    • v.11 no.3
    • /
    • pp.397-414
    • /
    • 2002
  • This paper presents an empirical analysis of exchange rate volatility, petroleum's import price and industrial production on petroleum imports. The GARCH framework is used to measure the exchange rate volatility. One of the most appealing features of the GARCH model is that it captures the volatility clustering phenomenon. We found one long-run relationship between petroleum imports, import price, industrial production, and exchange rate volatility using Johansen's multivariate cointegration methodology. Since there exists a cointegrating vector, therefore, we employ an error correction model to examine the short-run dynamic linkage, finding that the exchange rate volatility performs a key role in the short-run. This paper also apply impulse-response functions to provide the dynamic responses of energy consumption to the exchange rate volatility. The results show that the response of energy consumption to exchange rate volatility declines at the first month and dies out very quickly.

  • PDF

Bio-Jet Fuel Production Technologies for GHG Reduction in Aviation Sector (항공분야 온실가스 감축을 위한 바이오항공유 제조기술)

  • KIM, JAE-KON;PARK, JO YONG;YIM, EUI SOON;MIN, KONG-IL;PARK, CHEON-KYU;HA, JONG-HAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.609-628
    • /
    • 2015
  • Thie study presents the biomass-derived jet (bio-jet) fuel production technologies for greenhouse gas (GHG) reduction in aviation sector. The aviation sector is responsible for the 2% of the world anthropogenic $CO_2$ emissions and the 10% of the fuel consumption: airlines' costs for fuel reach 30% of operating costs. In addition, the aviation traffic is expected to double within 15 years from 2012, while fuel consumption and $CO_2$ emissions should double in 25 years. Biojet fuels have been claimed to be one of the most promising and strategic solutions to mitigate aviation emissions. This jet fuel, additionally, must meet ASTM International specifications and potentially be a100% drop-in replacement for current petroleum jet fuel. In this study, the current technologies for producing renewable jet fuels, categorized by alcohols-to-jet, oil-to-jet, syngas-to-jet, and sugar-to-jet pathways are reviewed for process, economic analysis and life cycle assessment (LCA) on conversion pathways to bio-jet fuel.

A Study on the Influence of Test Temperature & Cooling Fan Condition on the Fuel Test of Diesel Vehicle (디젤차량 연비시험에 있어 시험온도 및 냉각팬 조건이 미치는 영향분석에 관한 연구)

  • Kim, Hyun-Jin;Kim, Sung-Woo;Lim, Jae-Hyuk;Noh, Kyung-ha;Lee, Jung-Cheon;Kim, Ki-Ho;Oh, Sang-Gi
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.46-55
    • /
    • 2017
  • Due to the arise of natural disasters caused by global warming, consumers have more interest in the fuel efficiency of their vehicles, and fuel efficiency became an important factor in comparing vehicles. In this market situation, methods to measure fuel efficiency has become one of the main interests of vehicle related organizations and laboratories, and the current method to measure fuel efficiency is to follow the notification established by the ministry of trade, industry and energy, ministry of environment, and the ministry of land, infrastructure and transport. In this study, we analyze the influence of vehicle fuel efficiency according to test temperature and cooling fan condition which have the possibility to cause difference in fuel efficiency. The analysis results of the influence of the fuel efficiency according to the test temperature, the difference of the fuel efficiency of the test temperature ($21{\sim}29^{\circ}C$) within the allowable range of the notification showed a maximum difference of 2.9%. Therefore, it is necessary to consider the introduction of a test method that permits only the temperature change based on the reference point as the allowable range even in the test within the allowable range. The analysis of the influence of the fuel efficiency according to the cooling method showed no significant effect, and it seems reasonable to maintain the test method of the current notification.

An Analysis of the Distribution Structure and Logistics System of Light Petroleum Products (석유제품의 유통구조와 물류체계 분석 - 경질제품을 대상으로 -)

  • 이희연;최윤선
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.5-24
    • /
    • 2002
  • The purpose of this study is to analyze the distribution structure and the logistics system of light petroleum products from the spatial perspectives. The consumption structure of petroleum products has been changed since the mid 1980s. The growth rate of consumption for light products has been much faster than those of heavy products. The distribution structure of the petroleum products is hierarchically established by refining companies, agencies, and gas stations. The petroleum products agencies are distributed unevenly over the country, and the number of gas stations per one petroleum agency are very differentiated by the region. The light products are directly transported from refining factories to oil storages and then are carried to gas stations. According to the locational characteristics, oil storages which play a key role in the logistics system are categorized into three type. The first type is demand-oriented oil storages which are located near or in the large cities to supply the light petroleum products. The second type is harbors-oriented oil storages which are located within harbors. The third type is railway-oriented oil storages which are located along railway stations. In this study, the thresholds of one oil storage and one gas station are calculated based on the size of supply territory for each oil storage. The average number of population demand that allow a oil storage to stay in business is 1.9 million and average number of cars are 477,200.

  • PDF

The impact study on fuel economy of electric vehicle according to the test mode characteristics (시험모드 특성이 전기자동차의 에너지소비효율에 미치는 영향 연구)

  • Noh, Kyeong-Ha;Lim, Jae-Hyuk;Kim, Sung-Woo;Kim, Ki-ho;Ha, Jong-Han;Oh, Sang-Gi
    • Journal of Power System Engineering
    • /
    • v.19 no.6
    • /
    • pp.39-46
    • /
    • 2015
  • With rising fuel costs and the depletion of fossil fuels, electric vehicles of high efficiency has been increasing interest. although high-performance battery continually is developing, Electric vehicles is not satisfied with the characteristics of the environment. In this study, By using the current fuel economy testing methods(5-cycle test), until the fully discharged battery electric vehicles is evaluated for a variety of environmental and operating conditions. As a result, Electric vehicles showed a low energy consumption efficiency in low temperature and rapid acceleration, deceleration in the operating environment compared with normal temperature.

Effect of the Properties of Diesel Engine Oil and Aging on Exhaust Gases and DPF (경유엔진용 윤활유의 성상 및 열화가 배출가스 및 후처리 장치에 미치는 영향 연구)

  • Kim, JeongHwan;Kim, KiHo;Lee, JungMin
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.292-299
    • /
    • 2018
  • The objective of this research is to investigate the impact of engine oil aging on PM(Particulate Matter), exhaust gases, and DPF. It is widely known that the specification of a lubricant and its consumption in an ICE considerably influences the release of regulated harmful emissions under normal engine operating conditions. Considering DPF clogging phenomena associated with lubricant-derived soot/ash components, a simulated aging mode is designed for DPF to facilitate engine dynamometer testing. A PM/ash accumulation cycle is developed by considering real-world engine operating conditions for the increment of engine oil consumption and natural DPF regeneration for ash accumulation. The test duration for DPF aging is approximately 300 h with high- and low-SAPs engine oils. Detailed engine lubricant properties of new and aged oils are analyzed to evaluate the effect of engine oil degradation on vehicle mileage. Furthermore, physical and chemical analyses are performed using X-CT, ICP, and TGA/DSC to quantify the engine oil contribution on the PM composition. This is achieved by sampling with various filters using specially designed PM sampling equipment. Using high SAPs engine oil causes more PM/ash accumulation compared with low SAPs engine oils and this could accelerate fouling of the EGR in the engine, which results in an increase in harmful exhaust gas emissions. These test results on engine lubricants under operating conditions will assist in the establishment of regulated and unregulated toxic emissions policies and lubricant quality standards.

Energy Consumption and GHG Emissions from Fuel Combustion in Korean Livestock Sector (축산업의 에너지 소비 및 연료연소에 의한 온실가스 배출 특성)

  • Shim, Sunghee;Lee, Bo Hye;Park, Tae Sik;Jeong, Kyonghwa
    • Journal of Climate Change Research
    • /
    • v.6 no.4
    • /
    • pp.267-276
    • /
    • 2015
  • This study estimates Korea's livestock energy consumption and GHG emissions from Korean livestock sector. The results show that livestock energy consumption in 2013 is 474 thousand TOE, 19.0% of total energy consumption in agriculture sector. It is estimated that GHG emission of fuel combustion from livestock sector is 956 thousand tons of $CO_2$ equivalent while a total of 4,589 thousand tons of $CO_2$ equivalent is emitted from agriculture sector. The livestock GHG emission as a proportion of the total agriculture GHG emissions (20.8%) is higher than the livestock energy consumption as a proportion of agriculture energy consumption (19.0%). This is because coal and petroleum consumption in livestock sector as a proportion of the total livestock energy consumption is higher than that in agriculture sector.

Estimation of BTX Emission Using Pseudo-gasoline (유사휘발유 사용에 의한 BTX 배출량 추정)

  • Jeon, So-Young;Kim, Jeong;Jang, Young-Kee;Jung, Bong-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.5
    • /
    • pp.527-537
    • /
    • 2012
  • The increasing consumption of pseudo-petroleum products (PPP) has been disturbing the national petroleum market. The use of PPP lead to tax evasion, disturbance of sound trading principles, component corrosion of cars, and explosion accident. Also, PPP have emitted hazardous air pollutants (HAP) including the carcinogenic aromatic hydrocarbons, PAHs and aldehydes more than regular-petroleum products. It thus has potentials to cause many environmental and health care problems. In this study, benzene, toluene and xylene emissions from road transport vehicles due to the use of pseudo-gasoline are estimated for the year 2008. The results of our study provide emission estimates of benzene, toluene and xylene for the year as 405, 1,711, 717 tonne/yr, respectively for regular-gasoline. BTX emissions are calculated as 452~515, 1,882~2,264 and 732~752 tonne/yr when the amount of pseudo-gasoline is estimated to account for 6~13% for regular-gasoline consumption. BTX emissions increased as much as 12~27, 10~32, 2~5% by using pseudo-gasoline. It is found that the pseudo-gasoline should be the key component to produce HAP in urban area.