• Title/Summary/Keyword: Petroleum

Search Result 8,022, Processing Time 0.036 seconds

Development of the Holocene Sediments in Gamak Bay of the South Sea, Korea (남해 가막만의 현생퇴적층 발달특성)

  • Kim, So Ra;Lee, Gwang Soo;Choi, Dong Lim;Kim, Dae Choul;Lee, Tae Hee;Seo, Young Kyo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.2
    • /
    • pp.131-146
    • /
    • 2014
  • High-resolution seismic profiles coupled with sediment sampling were analyzed to investigate the acoustic characters and distribution patterns of the late Holocene sediments in Gamak Bay of the South Sea, Korea. The mean grain size of surficial sediment lies around $6.3{\sim}9.7{\Phi}$. Sediments in the bay consist of silt and clay with progressive decrease toward the inner bay. The seismic sedimentary sequence overlying the acoustic basement can be divided into two sedimentary units (GB I and II) by a prominent mid-reflector (Maximum Flooding Surface; MFS). The acoustic basement occurs at the depth between 20 m and 40 m below the sea-level and deepens gradually southward. The GB I, mostly occupying the channel-fill, is characterized by reflection-free seismic facies. It can be formed as late Transgressive System Tract (TST), interpreted tidal environment deposits. MFS appears at the depth of about 15~28 m below the sea-level and is well defined by even and continuous reflectors on the seismic profile. The GB II overlying MFS is composed of acoustically transparent to semitransparent and parallel internal reflectors. GB II is interpreted as the Highstand System Tract (HST) probably deposited during the last 6,000 yrs when the sea level was close to the present level. Especially, it is though that the GB II was subdivided into two layers (GB II-a and II-b) by a HST-reflector and this was classified by wind, sea water flux, and tidal current.

Study on the Dissolution of Sandstones in Gyeongsang Basin and the Calculation of Their Dissolution Coefficients under CO2 Injection Condition (이산화탄소 지중 주입에 의한 경상분지 사암의 용해반응 규명 및 용해 반응상수값 계산)

  • Kang, Hyunmin;Baek, Kyoungbae;Wang, Sookyun;Park, Jinyoung;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.45 no.6
    • /
    • pp.661-672
    • /
    • 2012
  • Lab scale experiments to investigate the dissolution reaction among supercritical $CO_2$-sandstone-groundwater by using sandstones from Gyeongsang basin were performed. High pressurized cell system (100 bar and $50^{\circ}C$) was designed to create supercritical $CO_2$ in the cell, simulating the sub-surface $CO_2$ storage site. The first-order dissolution coefficient ($k_d$) of the sandstone was calculated by measuring the change of the weight of thin section or the concentration of ions dissolved in groundwater at the reaction time intervals. For 30 days of the supercritical $CO_2$-sandstone-groundwater reaction, physical properties of sandstone cores in Gyeongsang basin were measured to investigate the effect of supercritical $CO_2$ on the sandstone. The weight change of sandstone cores was also measured to calculate the dissolution coefficient and the dissolution time of 1 g per unit area (1 $cm^2$) of each sandstone was quantitatively predicted. For the experiment using thin sections, mass of $Ca^{2+}$ and $Na^+$ dissolved in groundwater increased, suggesting that plagioclase and calcite of the sandstone would be significantly dissolved when it contacts with supercritical $CO_2$ and groundwater at $CO_2$ sequestration sites. 0.66% of the original thin sec-tion mass for the sandstone were dissolved after 30 days reaction. The average porosity for C sandstones was 8.183% and it increased to 8.789% after 30 days of the reaction. The average dry density, seismic velocity, and 1-D compression strength of sandstones decreased and these results were dependent on the porosity increase by the dissolution during the reaction. By using the first-order dissolution coefficient, the average time to dissolve 1 g of B and C sandstones per unit area (1 $cm^2$) was calculated as 1,532 years and 329 years, respectively. From results, it was investigated that the physical property change of sandstones at Gyeongsang basin would rapidly occur when the supercritical $CO_2$ was injected into $CO_2$ sequestration sites.

Assessment of Environmental Impacts and $CO_2$ Emissions from Soil Remediation Technologies using Life Cycle Assessment - Case Studies on SVE and Biopile Systems - (전과정평가(LCA)에 의한 토양오염 정화공정의 환경영향분석 및 $CO_2$ 배출량 산정 - SVE 및 Biopile 시스템 중심으로 -)

  • Jeong, Seung-Woo;Suh, Sang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.4
    • /
    • pp.267-274
    • /
    • 2011
  • The environmental impacts of 95% remediation of a total petroleum hydrocarbon-contaminated soil were evaluated using life cycle assessment (LCA). LCA of two remediation systems, soil vapor extraction (SVE) and biopile, were conducted by using imput materials and energy listed in a remedial system standardization report. Life cycle impact assessment (LCIA) results showed that the environmental impacts of SVE were all higher than those of biopile. Prominent four environmental impacts, human toxicity via soil, aquatic ecotoxicity, human toxicity via surface water and human toxicity via air, were apparently found from the LCIA results of the both remedial systems. Human toxicity via soil was the prominent impact of SVE, while aquatic ecotoxicity was the prominent impact of biopile. This study also showed that the operation stage and the activated carbon replacement stage contributed 60% and 36% of the environmental impacts of SVE system, respectively. The major input affecting the environmental impact of SVE was electricity. The operation stage of biopile resulted in the highest contribution to the entire environmental impact. The key input affecting the environmental impact of biopile was also electricity. This study suggested that electricity reduction strategies would be tried in the contaminated-soil remediation sites for archieving less environmental impacts. Remediation of contaminated soil normally takes long time and thus requires a great deal of material and energy. More extensive life cycle researches on remedial systems are required to meet recent national challenges toward carbon dioxide reduction and green growth. Furthermore, systematic information on electricity use of remedial systems should be collected for the reliable assessment of environmental impacts and carbon dioxide emissions during soil remediation.

Comparison of Direct and Indirect $CO_2$ Emission in Provincial and Metropolitan City Governments in Korea: Focused on Energy Consumption (우리나라 광역지방자치단체의 직접 및 간접 $CO_2$ 배출량의 비교 연구: 에너지 부문을 중심으로)

  • Kim, Jun-Beum;Chung, Jin-Wook;Suh, Sang-Won;Kim, Sang-Hyoun;Park, Hung-Suck
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.12
    • /
    • pp.874-885
    • /
    • 2011
  • In this study, the urban $CO_2$ emission based on energy consumption (Coal, Petroleum, Electricity, and City Gas) in 16 provincial and metropolitan city governments in South Korea was evaluated. For calculation of the urban $CO_2$ emission, direct and indirect emissions were considered. Direct emissions refer to generation of greenhouse gas (GHG) on-site from the energy consumption. Indirect emissions refer to the use of resources or goods that discharge GHG emissions during energy production. The total GHG emission was 497,083 thousand ton $CO_2eq.$ in 2007. In the indirect GHG emission, about 240,388 thousand ton $CO_2eq.$ was occurred, as 48% of total GHG emission. About 256,694 thousand ton $CO_2eq.$ (52% of total GHG emissions) was produced in the direct GHG emission. This amount shows 13% difference with 439,698 thousand ton $CO_2eq.$ which is total national GHG emission data using current calculation method. Local metropolitan governments have to try to get accuracy and reliability for quantifying their GHG emission. Therefore, it is necessary to develop and use Korean emission factors than using the IPCC (Intergovernmental Panel on Climate Change) emission factors. The method considering indirect and direct GHG emission, which is suggested in this study, should be considered and compared with previous studies.

Characteristics and Stratigraphic Implications of Granitic Rock Fragments in the Pyroclastic Rocks, SE Jinhae, Korea (진해시 남동부 화성쇄설암 내 화강암편의 특징과 층서적 의미)

  • Cho, Hyeong-Seong;Kim, Jong-Sun;Lee, Jeong-Hwan;Jeong, Jong-Ok;Son, Moon;Kim, In-Soo
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.116-128
    • /
    • 2007
  • Detailed geological mapping, petrographic study, analyses of geochemistry and magnetic susceptibility, and K-Ar dating were carried out in order to determine the origin, age, and stratigraphic implications of granitic rock fragments in the pyroclastic rocks, SE Jinhae city, southern part of the Gyeongsang Basin. As a result, it was found that the area is composed of volcanics and tuffaceous sediments of the Yucheon Group, Bulguksa granites, pyroclastics bearing granitic rock fragments, $basalt{\sim}basaltic$ andesite, and rhyolite in ascending stratigraphic order. The granitic rock fragments in the pyroclastic rocks are divided into granodiorite and biotite granite, which have approximately the same characteristics as the granodiorite and the biotite granite of the Bulguksa granites, respectively, in and around the study area including color, grain size, mineral composition, texture (perthitic and micrographic textures), intensity of magnetic susceptibility (magnetite series), and geochemical features (calc-alkaline series and REE pattern). This leads to the conclusion that the rock fragments originated from the late Cretaceous Bulguksa granites abundantly distributed in and around the study area, but not from the basement rocks of the Yeongnam massif or the Jurassic granites. Based on relative and absolute ages of various rocks in the study area, the pyroclastics bearing granitic rock fragments are interpreted to have erupted between 52 and 16 Ma, i.e. during the Eocene and early Miocene. These results indicate that the various volcanisms, acidic to basic in composition, occurred after the intrusion of the Bulguksa granites, contrary to the general stratigraphy of the Gyeongsang Basin. Very detailed and cautious mapping together with relative and absolute age determinations are, thus, necessary in order to establish reliable stratigraphy of the Yucheon Group in other areas of the Gyeongsang Basin.

Velocity-effective stress response of $CO_2$-saturated sandstones ($CO_2$로 포화된 사암의 속도-유효응력 반응)

  • Siggins, Anthony F.
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.60-66
    • /
    • 2006
  • Three differing sandstones, two synthetic and one field sample, have been tested ultrasonically under a range of confining pressures and pore pressures representative of in-situ reservoir pressures. These sandstones include: a synthetic sandstone with calcite intergranular cement produced using the CSIRO Calcite In-situ Precipitation Process (CIPS); a synthetic sandstone with silica intergranular cement; and a core sample from the Otway Basin Waarre Formation, Boggy Creek 1 well, from the target lithology for a trial $CO_2$ pilot project. Initial testing was carried on the cores at "room-dried" conditions, with confining pressures up to 65 MPa in steps of 5 MPa. All cores were then flooded with $CO_2$, initially in the gas phase at 6 MPa, $22^{\circ}C$, then with liquid-phase $CO_2$ at a temperature of $22^{\circ}C$ and pressures from 7 MPa to 17 MPa in steps of 5 MPa. Confining pressures varied from 10 MPa to 65 MPa. Ultrasonic waveforms for both P- and S-waves were recorded at each effective pressure increment. Velocity versus effective pressure responses were calculated from the experimental data for both P- and S-waves. Attenuations $(1/Q_p)$ were calculated from the waveform data using spectral ratio methods. Theoretical calculations of velocity as a function of effective pressure for each sandstone were made using the $CO_2$ pressure-density and $CO_2$ bulk modulus-pressure phase diagrams and Gassmann effective medium theory. Flooding the cores with gaseous phase $CO_2$ produced negligible change in velocity-effective stress relationships compared to the dry state (air saturated). Flooding with liquid-phase $CO_2$ at various pore pressures lowered velocities by approximately 8% on average compared to the air-saturated state. Attenuations increased with liquid-phase $CO_2$ flooding compared to the air-saturated case. Experimental data agreed with the Gassmann calculations at high effective pressures. The "critical" effective pressure, at which agreement with theory occurred, varied with sandstone type. Discrepancies are thought to be due to differing micro-crack populations in the microstructure of each sandstone type. The agreement with theory at high effective pressures is significant and gives some confidence in predicting seismic behaviour under field conditions when $CO_2$ is injected.

Tephrostratigraphy and Paleoenvironments of Marine Core in the Kita-Yamato Trough, East Sea/Japan Sea (동해 키타-야마토 해곡에서 채취된 시추코아의 테프라층서와 고환경)

  • Chun Jong-Hwa;Cheong Daekyo;Han Sang-Joon;Huh Sik;Yoo Hai-Soo
    • Economic and Environmental Geology
    • /
    • v.39 no.1 s.176
    • /
    • pp.83-93
    • /
    • 2006
  • The Kita-Yamato Trough is characterized by a SW-NE trending narrow graben between the Yamato Bank and the Kita-Yamato Bank in the central East Sea/Japan Sea (ES/JS). Core 20EEZ-1 was obtained in the flat summit of a small ridge from the southwest Kita-Yamato Trough. The sedimentation was mainly controlled by the supply of hemipelgic sediments and substantial tephras from explosive volcanic eruptions of the Quaternary volcanoes. The aim of this study is to reconstruct the tephrostratigraphy from the marine sediments collected from the Kita-Yamato Trough and to provide the atmosphere and ocean conditions during the explosive volcanic eruptions. According to the detailed tephrostratigraphy and lithofacies records, the core sediments were deposited during the last marine isotope stage (MIS) 7. The core consists of four lithofacies, idetified as, oxidized mud (OM), crudely laminated mud (CLM) and bioturbated mud (BM), interbedded with coarse-grained tephra (TP). The major element geochemistry and stratigraphic positions of seven tephra layers suggest that they originated from the Aira caldera in Kyushu area among the Japanese islands (AT tephra; 29.24 ka), unknown submarine volcano in the south Korea Plateau (SKP-I; MIS 3, SKP-II; MIS 4, SKP-IV; boundary between MIS 6 and MIS 5e, SKP-V; MIS 6, respectively), and the Baegdusan volcano in the Korean Peninsula (B-KY1; ca. 130 ka, B-KY2; ca. 196 ka). The absence of tephras originated trom Ulleung Island in core 20EEZ-l suggest that the tephras had not been transported into the Kita-Yamato Trough by atmosphere conditions during the eruptions. On the other hand, the B-KYI and the B-KY2 tephras derived from the Baegdusan volcano were founded in the Kita-Yamato Trough by a presence of prevailing westerly winds during the eruptions. Furthermore, the SKP tephras were characterized by the transport across the air-water interface, causing quickly thrust of raising eruption plumes from subaqueous explosive eruptions. Surface currents may play an important role in controlling the distribution patterns of the SKP tephras to distal areas. The tephrostratigraphic study in the Kita-Yamato Trough provides the important chronostratigraphic marker horizons and the detailed atmosphere and ocean conditions during the explosive eruptions.

Distribution and Sources of Pb in Southern East/Japan Sea Sediments using Pb isotopes (동해 남부 해역 퇴적물에서 Pb동위원소를 이용한 Pb의 기원 추적 연구)

  • Choi Man Sik;Cheong Chang-Sik;Han Jeong Hee;Park Kye-Hun
    • Economic and Environmental Geology
    • /
    • v.39 no.1 s.176
    • /
    • pp.63-74
    • /
    • 2006
  • In order to identify the Pb pollution and its sources in continental shelf and slope areas, Pb concentration and Pb isotope ratios ($^{207}Pb/^{206}Pb\;and\;^{208}Pb/^{206}Pb$) were determined far 6 box corer sediments collected from the southern East/japan Sea. Pb concentration, and $^{207}Pb/^{206}Pb\;and\;^{208}Pb/^{206}Pb$ ratios were constant at around $25\pm5 ppm$ and 0.842 and 2.092 from 1700 to 1930 year, respectively and increased steadily up to $40\pm5 ppm$ and 0.867 and 2.123 at the beginning of 1990s', respectively. The increase of concentration and isotope ratios in the labile fraction (leached by 2M HC1+0.5M $HNO_3$) explains their increase in bulk sediments, while Pb concentration and isotope ratios in the residual fraction were nearly constant during 300yrs. Temporal variation of Pb isotope ratios was explained by simple two end-members mixing of geo-genic and anthropogenic sources because isotope ratios and the inverse of Pb concentration showed the good linear relationships. Using Pb isotope ratios, we can constrain two Pb sources in the study area. The one is atmospheric particulates, compared with mean values of isotope ratios in atmospheric particulates collected at Jeju and Oki ;stands, based on the history of Pb emmission in Korea and China, and judged by oceanographic processes capable of homogenizing many sources. The other is local sources related to iron mills, refineries of Pb ore and of petroleum located at the coast of the study area. Isotope ratios of anthropogenic Pb can be estimated using two end-members mixing equation and were $0.879\pm0.005\;and\;2.144\pm0.008$ before 1950s' while they increased up to $0.900\pm0.008\;and\;2.162\pm0.011$ after 1980s', respectively.

Effect of Heating by Nano-Carbon Fiber Infrared Lamps on Growth and Vase Life of Cut Roses and Heating Cost (나노탄소섬유 적외선등 난방이 절화장미의 생육과 수명 및 난방비에 미치는 영향)

  • Lim, Mi-Young;Ko, Chung-Ho;Son, Moon-Sook;Lee, Sang-Bok;Kim, Gil-Ju;Kim, Byung-Soo;Kim, Young-Bok;Jeong, Byoung-Ryong
    • Journal of Bio-Environment Control
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • The greatest and major cost for cut rose production during winter seasons in Korea is cost of heating the greenhouse. A study was conducted on a cost-efficient heating system to reduce expenses of cut rose growers in times of high energy prices. An infrared heating system utilizing radiant energy has an obvious advantage over other heating methods in that the energy is first used to raise temperatures of plants and other objects and subsequently that of the atmosphere, resulting in faster reaching to desired plant temperatures at a reduced heating cost. In this study the heating effect and heating cost saving of a nano-carbon fiber infrared heating system (NCFIHS) installed in cut rose greenhouses in Gimhae, Gyeongnam Province were analyzed comparatively. In addition growth, quality, and vase life of 'Orange Fresh' roses grown in greenhouses heated by NCFIHS against those grown in greenhouses heated by so called an electrical heating system. In greenhouses with a NCFlHS with a set point air temperature of $20^{\circ}C$, plant temperature was maintained at $1{\sim}2^{\circ}C$ higher than the air temperature, and temperatures of growing bed surface and root zone were maintained at $17{\sim}19^{\circ}C$ throughout cold winter nights. The cost for heating in NCFIHS was about 25 and 51% of that of an electrical heating system and a hot water heating system heated by petroleum, respectively. Growth of roses harvested in greenhouses with a NCFIHS was similar to those grown in greenhouses with an electrical heating system. However, cut roses with more intense petal and leaf colors and a longer vase life (fresh weight and amount of water uptake) were harvested in greenhouses with a NCFIHS as compared to those harvested in greenhouses with an electrical heating system.

Evaluation of Performance Based Design Method of Concrete Structures for Various Climate Changes (다양한 기후변화에 따른 콘크리트 구조물의 성능중심형 설계 평가)

  • Kim, Tae-Kyun;Shim, Hyun-Bo;Ahn, Tae-Song;Kim, Jang-Ho Jay
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.8-16
    • /
    • 2013
  • Currently, global warming has advanced by the usage of fossil fuels such as coal and petroleum. and the atmosphere temperature in the world of 100 years(1906~2005) has been risen $0.74^{\circ}C{\pm}0.18^{\circ}C$, IPCC announced that the global warming effect of last decade was nearly doubled compared to the changes($0.07^{\circ}C{\pm}0.02^{\circ}C$/10year) in the past 100 years. Moreover, due to the global warming, heat wave, heavy snow, heavy rain, super typhoon, were caused and are increasing to happen in the world continuously causing damages and destruction of social infrastructures, where concrete structures are suffering deterioration by long-term extreme climate changes. to solve these problems, the new construction technology and codes are necessary. In this study, to solve these problems, experiments on a variety of cases considering the temperature and humidity, the main factors of climate factors, were performed, and the cases are decided by temperature and humidity. The specimens were tested in compressive strength test and split tensile test by the curing age(3,7,28 days) morever, performance based design(PBD) method was applied by using the satisfaction curve developed from the experiment date. PBD is the design method that gathers the current experimental analysis and past experimental analysis and develops the material properties required for the structure, and carries out the design of concrete mix, and it is recently studied actively worldwide. Also, it is the ultimate goal of PBD to design and perform on structures have sufficient performance during usage and to provide the problem solving for various situations, Also, it can achieve maximum effect in terms of functionality and economy.