• 제목/요약/키워드: Petroleum

검색결과 8,011건 처리시간 0.03초

오염토양 내 석유제품 판별을 위한 TPH 및 BTEX 분석 (Combined TPH and BTEX Analytic Method to Identify Domestic Petroleum Products in Contaminated Soil)

  • 임영관;나용규;김정민;김종렬;하종한
    • Tribology and Lubricants
    • /
    • 제33권6호
    • /
    • pp.263-268
    • /
    • 2017
  • The significance of maintaining the soil environment is gradually increasing owing to soil and underground water contamination by petroleum leak accidents. However, the purification of soil is an expensive and more time-consuming process than the purification of contaminated water and air. Moreover, determining the source and people responsible for soil pollution gets often embroiled in legal conflicts, further delaying the cleanup process of the contaminate site. Generally, TPH (total petroleum hydrocarbon) pattern analysis is used to determine the petroleum species and polluter responsible for soil contamination. However, this process has limited application for petroleum products with a similar TPH pattern. In this study, we analyze the TPH pattern and specific sectional ratio (${\sim}C_{10}$, $C_{10}-C_{12}$, $C_{12}-C_{36}$, and $C_{36}{\sim}$) of various domestic petroleum products to identify the petroleum product responsible for soil contamination. Also, we perform BTEX (benzene, toluene, ethyl benzene, xylene) quantitative analysis and determine B:T:E:X ratio using GC-MS. The results show that gasoline grade 1 and 2 have a similar TPH pattern but different BTEX values and ratios. This means that BTEX analysis can be used as a new method to purify soil pollution. This complementary TPH and BTEX method proposed in this study can be used to identify the petroleum species and polluters present in the contaminated soil.

가짜휘발유 판정을 위한 성분 분석 (Analysis of Component for Determining Illegal Gasoline)

  • 임영관;원기요;강병석;박소휘;정성;고영훈;김성수;정길형
    • Tribology and Lubricants
    • /
    • 제36권3호
    • /
    • pp.161-167
    • /
    • 2020
  • Petroleum is the most used energy source in Korea with a usage rate of 39.5% among the available 1st energy source. The price of liquid petroleum products in Korea includes a lot of tax such as transportation·environment·energy tax. Thus, illegal production and distribution of liquid petroleum is widespread because of its huge price difference, including its tax-free nature, from that of the normal product. Generally, illegal petroleum product is produced by illegally mixing liquid petroleum with other similar petroleum alternatives. In such case, it is easy to distinguish whether the product is illegal by analyzing its physical properties and typical components. However, if one the components of original petroleum product is added to illegal petroleum, distinguishing between the two petroleum products will be difficult. In this research, we inspect illegally produced gasoline, which is mixed with methyl tertiary butyl ether (MTBE) as an octane booster. This illegal gasoline shows a high octane number and oxygen content. Further, we analyze the different types of green dyes used in illegal gasoline through high performance liquid chromatography (HPLC). We conduct component analyses on the simulated sample obtained from premium gasoline and MTBE. Finally, the illegal gasoline is defined as premium gasoline with 10% MTBE. The findings of this study suggest that illegal petroleum can be identified through an analytic method of components and simulated samples.

토양 내 복합유종에 의한 오염 해석 연구 (Interpretation of Contaminated Soil by Complex Oil)

  • 임영관;김정민;김종렬;하종한
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권1호
    • /
    • pp.13-17
    • /
    • 2017
  • Over 30% of domestic soil contamination has occurred via petroleum products and complex oil. Moreover, contamination by complex oil is more intense than it is by a single petroleum product species. In this study, we analyzed sectional TPH (total petroleum hydrocarbon) pattern and sectional ratio of current domestically distributed petroleum products, such as kerosene, diesel, bunker C, and lubricant and complex oils, to determine pollution characteristics of the soil. In the TPH pattern, kerosene, which is a light distillate, had an early retention time, and lubricant oil, which is a heavy distillate, had a late retention time in the gas chromatogram. In addition, we obtained a complexly contaminated soil via diesel and lubricant oil from the Navy and inspected it for its ratio of complex oil species. The inspection results showed that this soil was contaminated with 85% diesel and 15% lubricant oil. The method developed in this study could be used to determine complex petroleum sources and ratios at sites with accidentally contaminated soil.

국내 유통 중인 석유제품 내 석유계 총 탄화수소화합물(TPH) 분석 (Analysis of Total Petroleum Hydrocarbon in Domestic Distribution Petroleum)

  • 임영관;김정민;김종렬;권민정;이경흠;류승현
    • 공업화학
    • /
    • 제27권5호
    • /
    • pp.546-550
    • /
    • 2016
  • 국내 토양오염의 60~70% 이상이 석유제품에 의한 오염이며, 석유제품에 의해 토양오염이 발생될 경우, 토양환경보전법 상 B T E X와 total petroleum hydrocarbon (TPH)를 분석하도록 명시하고 있다. 본 연구에서는 국내 유통 중인 석유제품에 대한 구간별 TPH 패턴을 분석하였다. 또한 $C_8{\sim}C_{40}$ 구간만을 분석하는 현행 토양오염공정시험기준의 문제점을 보완하여 석유제품 내 TPH를 정량분석 하였다. 분석결과, 토양오염공정시험기준 분석조건으로 분석한 결과값과 보완된 분석방법을 이용했을 시, 휘발유와 용제 1호 같은 저비점 유류의 경우, 최대 85%의 차이가 발생하는 것을 확인하였다.

Mesophase formation behavior in petroleum residues

  • Kumar, Subhash;Srivastava, Manoj
    • Carbon letters
    • /
    • 제16권3호
    • /
    • pp.171-182
    • /
    • 2015
  • Mesophase pitch is an important starting material for making a wide spectrum of industrial and advanced carbon products. It is produced by pyrolysis of petroleum residues. In this work, mesophase formation behavior in petroleum residues was studied to prepare environmentally-benign mesophase pitches, and the composition of petroleum residues and its influence on the mesophase formation was investigated. Two petroleum residues, i.e., clarified oil s (CLO-1, CLO-2) obtained from fluid catalytic cracking units of different Indian petroleum refineries, were taken as feed stocks. A third petroleum residue, aromatic extract (AE), was produced by extraction of one of the CLO-1 by using N-methyl pyrrolidone solvent. These petroleum residues were thermally treated at 380℃ to examine their mesophase formation behavior. Mesophase pitches produced as a result of thermal treatment were characterized physico-chemically, as well as by instrumental techniques such as Fourier-transform infrared spectroscopy, nuclear magnetic resonance, X-ray diffraction and thermogravimetry/derivative thermogravimetry. Thermal treatment of these petroleum residues led to formation of a liquid-crystalline phase (mesophase). The mesophase formation behavior in the petroleum residues was analyzed by optical microscopy. Mesophase pitch prepared from CLO-2 exhibited the highest mesophase content (53 vol%) as compared to other mesophase pitches prepared from CLO-1 and AE.

석유의 군사적 역활

  • 대한석유협회
    • 석유와에너지
    • /
    • 6호통권64호
    • /
    • pp.134-138
    • /
    • 1986
  • 이 논문은 현재 미에너지성에 재직중이며 NATO 석유계획위원회 위원장인 Tom Cutler씨가 Petroleum Economist지에 발표한 "The role of petroleum in Wartime"을 번역한 것이다. 이것은 미에너지성이나 미국정부의 공식견해나 정책이 아니고 NATO의 공식입장도 아님을 밝혀둔다.

  • PDF

복합유류 토양오염에 따른 유종 해석 (The Interpretation of Petroleum Species from Contaminated Soil by Complex Oil)

  • 임영관;김지연;김완식;이정민
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제24권1호
    • /
    • pp.17-23
    • /
    • 2019
  • Clean soil environment is of crucial importance to sustain lives of ecosystem and humans. With rapid industrialization, there has been a great increase of soil contamination by accidental releases of petroleum products. In general, soil remediation is an expensive and time-consuming process as compared to cleanup of water and air. Moreover, determining the source and responsible parties of soil pollution often turns into legal conflicts and that further delay the cleanup process of contaminated sites. In practice, total petroleum hydrocarbon (TPH) analysis has been employed to determine the petroleum species and to track down the responsible polluters. However, this approach often suffers from differentiating similar TPH species. In this study, we analyzed TPH chromatogram patterns of 24 domestic petroleum products in specific carbon ranges (${\sim}C_{10}$, $C_{10}-C_{12}$, $C_{12}-C_{36}$, and $C_{36}{\sim}$) and the fractional changes of THP ratio in the mixture products of gasoline, kerosene and diesel. The proposed TPH analysis method in this study could serve as a useful tool to better analyze the petroleum species in soils contaminated with complex oil mixtures, and ultimately be used to identify the polluters of soil.

석유 코크스의 에너지 전환 : CO2 가스화 (Energy conversion of petroleum coke : CO2 gasification)

  • 국진우;곽인섭;이시훈
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.255-257
    • /
    • 2014
  • The installation of light oil facilities or delayed cokers seems to be inevitable in the oil refinery industry due to the heavy crude oil reserves and the increased use of light fuels as petroleum products. Petroleum coke is a byproduct of oil refineries and it has higher fixed carbon content, higher calorific value, and lower ash content than coal. However, its sulfur content and heavy metal content are higher than coal. In spite of disadvantages, petroleum coke might be one of promising resources due to gasification processes. The gasification of petroleum coke can improve economic value of oil refinery industries by handling cheap, toxic wastes in an environment-friendly way. In this study, $CO_2$ gasification reaction kinetics of petroleum coke, various coals and mixing coal with petroleum coke have investigated and been compared by using TGA. The kinetics of $CO_2$ gasification has been performed with petroleum coke, 3 kinds of bituminous coal [BENGALLA, White Haven, TALDINSKY], and 3 kinds of sub-bituminous coal [KPU, LG, MSJ] at various temperature[$1100-1400^{\circ}C$].

  • PDF

HPLC를 이용한 석유제품 중의 식별제 Unimark 1494DB 분석 (Determination of Unimark 1494DB in Petroleum using HPLC)

  • 임영관;김동길;임의순;신성철
    • Korean Chemical Engineering Research
    • /
    • 제47권5호
    • /
    • pp.593-598
    • /
    • 2009
  • 정상경유에 등유 및 부생연료유를 인위적으로 혼합한 후, SPE 전처리 과정과 HPLC 분석을 통해 석유제품 내에 함유되어 있는 식별제의 정성 정량분석방법에 관해 연구하였다. SPE 전처리 과정에서 시료주입 후 15분에 분취된 시료에서 가장 높은 농도의 식별제가 분석되었다. 경유제품에 1 mg/L의 식별제를 혼입시킨 후, 전처리를 거쳐 HPLC로 분석한 결과 9.8분의 머무름시간에서 $1626.92mV{\cdot}sec$ 의 감도로 식별제가 분석되었으며, 또한 기존의 UV-Spectroscopy법으로 분석이 힘들었던 산성조건의 석유제품에서 식별제 분석이 가능하였다.