• Title/Summary/Keyword: Pet imaging

Search Result 658, Processing Time 0.754 seconds

Region of Interest Analysis for Standardized Uptake Value Ratio of 18F-fludeoxyglucose PET: Mild Cognitive Impairment and Alzheimer's Disease (경도인지장애와 알츠하이머병 환자의 18F-fludeoxyglucose PET 표준 섭취계수율에 대한 체적 및 피질 표면 기반 관심영역 분석)

  • Kim, Seonjik;Yoon, Uicheul
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.237-242
    • /
    • 2018
  • $^{18}F$-fludeoxyglucose PET (FDG-PET) can help finding an abnormal metabolic activity in brain. In this study, we evaluated an efficiency of volume- and cortical surface-based analysis which were used to determine whether standardized uptake value ratio (SUVR) of FDG-PET was different among Alzheimer's disease (AD), mild cognitive impairment (MCI), and healthy control (HC). Each PET image was rigidly co-registered to the corresponding magnetic resonance imaging (MRI) using mutual information. All voxels of the co-registered PET images were divided by the mean FDG uptake of the cerebellum cortex which was thresholded by partial volume effect (>0.9). Also, the SUVR value of each vertex was linearly interpolated from volumetric SUVR image which was thresholded by gray matter partial volume effect (>0.1). Lobar mean values were calculated from both volume- and cortical surface-based SUVRs. Statistical analysis was conducted to compare two measures for AD, MCI and HC groups. Even though the results of volume (SUVR_vol) and cortical surface-based SUVR (SUVR_surf) analysis were not significantly different from each other, the latter would be better for detecting group differences in SUVR of PET.

FDG PET Imaging For Dementia (치매의 FDG PET 영상)

  • Ahn, Byeong-Cheol
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.2
    • /
    • pp.102-111
    • /
    • 2007
  • Dementia is a major burden for many countries including South Korea, where life expectancy is continuously growing and the proportion of aged people is rapidly growing. Neurodegenerative disorders, such as, Alzheimer disease, dementia with Lewy bodies, frontotemporal dementia, Parkinson disease, progressive supranuclear palsy, corticobasal degeneration, Huntington disease, can cause dementia, and cerebrovascular disease also can cause dementia. Depression or hypothyroidism also can cause cognitive deficits, but they are reversible by management of underlying cause unlike the forementioned dementias. Therefore these are called pseudodementia. We are entering an era of dementia care that will be based upon the identification of potentially modifiable risk factors and early disease markers, and the application of new drugs postpone progression of dementias or target specific proteins that cause dementia. Efficient pharmacologic treatment of dementia needs not only to distinguish underlying causes of dementia but also to be installed as soon as possible. Therefore, differential diagnosis and early diagnosis of dementia are utmost importance. F-18 FDG PET is useful for clarifying dementing diseases and is also useful for early detection of the diseases. Purpose of this article is to review the current value of FDG PET for dementing diseases including differential diagnosis of dementia and prediction of evolving dementia.

The Imaging Features of Desmoid Tumors: the Usefulness of Diffusion Weighted Imaging to Differentiate between Desmoid and Malignant Soft Tissue Tumors

  • Lee, Seung Baek;Oh, Soon Nam;Choi, Moon Hyung;Rha, Sung Eun;Jung, Seung Eun;Byun, Jae Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.3
    • /
    • pp.162-170
    • /
    • 2017
  • Purpose: To evaluate the imaging findings of desmoid tumors using various imaging modalities and to evaluate whether diffusion-weighted imaging (DWI) can help differentiate between desmoid and malignant tumors. Materials and Methods: The study included 27 patients with pathologically confirmed desmoid tumors. Two radiologists reviewed 23 computed tomography (CT), 12 magnetic resonance imaging (MRI) and 8 positron emission tomography-computed tomography (PET-CT) scans of desmoid tumors and recorded data regarding the shape, multiplicity, size, location, degree of enhancement, and presence or absence of calcification or hemorrhage. The signal intensity of masses on T1- and T2-weighted imaging and the presence or absence of whirling or band-like low signal intensity on T2-weighted imaging were recorded. The apparent diffusion coefficient (ADC) values of the desmoid tumors in nine patients with DWIs were compared with the ADC values of 32 malignant tumors. The maximum standardized uptake value ($SUV_{max}$) on PET-CT images was measured in 8 patients who underwent a PET-CT. Results: The mean size of the 27 tumors was 6.77 cm (range, 2.5-26 cm) and four tumors exhibited multiplicity. The desmoid tumors were classified by shape as either mass forming (n = 18), infiltrative (n = 4), or combined (n = 5). The location of the tumors was either intra-abdominal (n = 15), within the abdominal wall (n = 8) or extra-abdominal (n = 4). Among the 27 tumors, 21 showed moderate to marked enhancement and 22 showed homogeneous enhancement. Two tumors showed calcifications and one displayed hemorrhage. Eleven of the 12 MR T2-weighted images showed whirling or band-like low signal intensity areas in the mass. The mean ADC value of the desmoid tumors ($1493{\times}10^{-6}mm^2/s$) was significantly higher than the mean of the malignant soft tissue tumors ($873{\times}10^{-6}mm^2/s$, P < 0.001). On the PET-CT images, all tumors exhibited an intermediate $SUV_{max}$ (mean, 3.7; range, 2.3-4.5). Conclusion: Desmoids tumors showed homogenous, moderate to marked enhancement on CT and MRI scans and a characteristic whirling or band-like pattern on T2-weighted images. DWI can be useful for the differentiation of desmoid tumors from malignant soft tissue tumors.

$^{18}F-FDG-PET/CT$ in Endometrial Carcinoma (자궁내막암에서 $^{18}F-FDG-PET/CT$)

  • Jeon, Tae-Joo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.sup1
    • /
    • pp.110-112
    • /
    • 2008
  • Endometrial carcinoma is one of the most common gynecologic malignancies and which is predominant in postmenopausal women. Clinically many patients are hospitalized in early stage due to clinical sign and symptom such as vaginal bleeding and in this case, patient's prognosis is known to be good. However, considerable number of patients with advanced and relapsed disease reveal poor prognosis. Therefore, exact staging work up is essential for proper treatment as is primary lesion detection. $^{18}F-FDG-PET$ has been widely used for the evaluation of gynecologic malignancies such as cervical carcinoma and ovarian cancer. In contrast, FDG PET application to endometrial carcinoma is limited until now and there is no sufficient data to validate the usefulness of FDG PET for this disease yet. However, several studies showed promising results that FDG PET is sensitive and specific in detection of recurrent or metastatic lesions. Therefore further active investigation in this field can facilitate the use of FDG PET for endometrial carcinoma.

Clinical Application of $^{18}F-FDG$ PET in Alzheimer's Disease (알쯔하이머병(Alzheimer's disease)에서 FDG PET의 임상이용)

  • Ryu, Young-Hoon
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.sup1
    • /
    • pp.166-171
    • /
    • 2008
  • PET of the cerebral metabolic rate of glucose is increasingly used to support the clinical diagnosis in the examination of patients with suspected major neurodegenerative disorders, such as Alzheimer's disease. $^{18}F-FDG$ PET has been reported to have high diagnostic performance, especially, very high sensitivity in the diagnosis and clinical assessment of therapeutic efficacy. According to clinical research data hitherto, $^{18}F-FDG$ PET is expected to be an effective diagnostic tool in early and differential diagnosis of Alzheimer's disease. Since 2004, Medicare covers $^{18}F-FDG$ PET scans for the differential diagnosis of fronto-temporal dementia (FTD) and Alzheimer's disease (AD) under specific requirements; or, its use in a CMS approved practical clinical trial focused on the utility of $^{18}F-FDG$ PET in the diagnosis or treatment of dementing neurodegenerative diseases.

Application of PET in Breast Cancer (유방암에서 PET의 응용)

  • Noh, Dong-Young
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.1
    • /
    • pp.34-38
    • /
    • 2002
  • Positron emission tomography(PET) is an imaging method that employs radionuclide and tomography techniques. Since 1995, we applied PET not only to the diagnosis of breast cancer but also to the detection of abnormalities in the augmented breast and to the detection of metastasis. Until 2001, we evaluated 242 breast cases by PET at PET center of Seoul National University Hospital. Our group has reported serially at the international journals. In the first report, PET showed high sensitivity for detecting breast cancer, both the primary and axillary node metastasis. A total of 27 patients underwent breast operations based on PET results at Seoul National University Hospital from 1995 to 1996. The diagnostic accuracy of PET were 97% for the primary tumor mass and 96% for axillary lymph node metastasis. In case of the breast augmented, PET also showed excellent diagnostic results for primary breast cancer and axillary lymph node metastasis where mammography and ultrasound could not diagnose properly. PET also had outstanding results in the detection of recurrent or metastatic breast cancer(sensitivity 94%, specificity 80%, accuracy 89%). In addition, our study gave some evidence that PET could be applied further to evaluate the growth rate of tumors by measuring SUV, and finally to prognosticated the disease. PET could also be applied to evaluate the response after chemotherapy to measure its metabolic rate and size. In conclsion, PET is a highly sensitive, accurate diagnostic tool for breast cancer of primary lesion in various conditions including metastasis.

Small Animal PET Imaging with [$^{124}I$]FIAU for Herpes Simplex Virus Type 1 Thymidine Kinase Gene Expression in a Hepatoma Model (간암 동물 모델에서 2'-fluoro-2'-deoxy-1-${\beta}$-D-arabinofuranosyl-5-[$^{124}I$iodo-uracil ($[^{124}I]FIAU$) 소동물 PET 영상 연구)

  • Chae, Min-Jeong;Lee, Tae-Sup;Kim, June-Youp;Woo, Gwang-Sun;Jumg, Wee-Sup;Chun, Kwon-Soo;Kim, Jae-Hong;Lee, Ji-Sup;Ryu, Jin-Sook;Cheon, Gi-Jeong;Choi, Chang-Woon;Lim, Sang-Moo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.3
    • /
    • pp.235-245
    • /
    • 2008
  • Purpose: The HSV1-tk gene has been extensively studied as a type of reporter gene. In hepatocellular carcinoma (HCC), only a small proportion of patients are eligible for surgical resection and there is limitation in palliative options. Therefore, there is a need for the development of new treatment modalities and gene therapy is a leading candidate. In the present study, we investigated the usefulness of substrate, 2'-fluoro-2'-deoxy-1-${\beta}$-D-arabino-furanosyi-5-[$^{124/125}I$]iodo- uracil ([$I^{124/125}I$]FIAU) as a non-invasive imaging agent for HSV1-tk gene therapy in hepatoma model using small animal PET. Material and Methods: With the Morris hepatoma MCA cell line and MCA-tk cell line which was transduced with the HSV1-tk gene, in vitro uptake and correlation study between [$^{125}I$]FIAU uptake according to increasing numeric count of percentage of MCA-tk cell were performed. The biodistribution data and small animal PET images with [$^{124}I$]FIAU were obtained with Balb/c-nude mice bearing both MCA and MCA-tk tumors. Results:, Specific accumulation of [[$^{125}I$]FIAU was observed in MCA-tk cells but uptake was low in MCA cells. Uptake in MCA-tk cells was 15 times higher than that of MCA cells at 480 min. [$^{125}I$]FIAU uptake was linearly correlated (R2 =0.964, p =0.01) with increasing percentage of MCA-tk numeric cell count. Biodistribution results showed that [$^{125}I$]FIAU was mainly excreted via the renal system in the early phase. Ratios of MCA-tk tumor to blood acting were 10, 41, and 641 at 1 h, 4 h, and 24 h post-injection, respectively. The maximum ratio of MCA-tk to MCA tumor was 192.7 at 24 h. Ratios of MCA-tk tumor to liver were 13.8, 66.8, and 588.3 at 1 h, 4 h, and 24 h, respectively. On small animal PET, [$^{124}I$]FIAU accumulated in substantial higher levels in MCA-tk tumor and liver than MCA tumor. Conclusion: FIAU shows selective accumulation to HSV1-tk expressing hepatoma cell tumors with minimal uptake in normal liver. Therefore, radiolabelled FIAU is expected to be a useful substrate for non-invasive imaging of HSV1-tk gene therapy and therapeutic response monitoring of HCC.

Estimation of Internal Motion for Quantitative Improvement of Lung Tumor in Small Animal (소동물 폐종양의 정량적 개선을 위한 내부 움직임 평가)

  • Yu, Jung-Woo;Woo, Sang-Keun;Lee, Yong-Jin;Kim, Kyeong-Min;Kim, Jin-Su;Lee, Kyo-Chul;Park, Sang-Jun;Yu, Ran-Ji;Kang, Joo-Hyun;Ji, Young-Hoon;Chung, Yong-Hyun;Kim, Byung-Il;Lim, Sang-Moo
    • Progress in Medical Physics
    • /
    • v.22 no.3
    • /
    • pp.140-147
    • /
    • 2011
  • The purpose of this study was to estimate internal motion using molecular sieve for quantitative improvement of lung tumor and to localize lung tumor in the small animal PET image by evaluated data. Internal motion has been demonstrated in small animal lung region by molecular sieve contained radioactive substance. Molecular sieve for internal lung motion target was contained approximately 37 kBq Cu-64. The small animal PET images were obtained from Siemens Inveon scanner using external trigger system (BioVet). SD-Rat PET images were obtained at 60 min post injection of FDG 37 MBq/0.2 mL via tail vein for 20 min. Each line of response in the list-mode data was converted to sinogram gated frames (2~16 bin) by trigger signal obtained from BioVet. The sinogram data was reconstructed using OSEM 2D with 4 iterations. PET images were evaluated with count, SNR, FWHM from ROI drawn in the target region for quantitative tumor analysis. The size of molecular sieve motion target was $1.59{\times}2.50mm$. The reference motion target FWHM of vertical and horizontal was 2.91 mm and 1.43 mm, respectively. The vertical FWHM of static, 4 bin and 8 bin was 3.90 mm, 3.74 mm, and 3.16 mm, respectively. The horizontal FWHM of static, 4 bin and 8 bin was 2.21 mm, 2.06 mm, and 1.60 mm, respectively. Count of static, 4 bin, 8 bin, 12 bin and 16 bin was 4.10, 4.83, 5.59, 5.38, and 5.31, respectively. The SNR of static, 4 bin, 8 bin, 12 bin and 16 bin was 4.18, 4.05, 4.22, 3.89, and 3.58, respectively. The FWHM were improved in accordance with gate number increase. The count and SNR were not proportionately improve with gate number, but shown the highest value in specific bin number. We measured the optimal gate number what minimize the SNR loss and gain improved count when imaging lung tumor in small animal. The internal motion estimation provide localized tumor image and will be a useful method for organ motion prediction modeling without external motion monitoring system.

Serial line multiplexing method based on bipolar pulse for PET

  • Kim, Yeonkyeong;Choi, Yong;Kim, Kyu Bom;Leem, Hyuntae;Jung, Jin Ho
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3790-3797
    • /
    • 2021
  • Although the individual channel readout method can improve the performance of PET detectors with pixelated photo-sensors, such as silicon photomultiplier (SiPM), this method leads to a significant increase in the number of readout channels. In this study, we proposed a novel multiplexing method that could effectively reduce the number of readout channels to reduce system complexity and development cost. The proposed multiplexing circuit was designed to generate bipolar pulses with different zero-crossing points by adjusting the time constant of the high-pass filter connected to each channel of a pixelated photo-sensor. The channel position of the detected gamma-ray was identified by estimating the width between the rising edge and the zero-crossing point of the bipolar pulse. In order to evaluate the performance of the proposed multiplexing circuit, four detector blocks, each consisting of a 4 × 4 array of 3 mm × 3 mm × 20 mm LYSO and a 4 × 4 SiPM array, were constructed. The average energy resolution was 13.2 ± 1.1% for all 64 crystal pixels and each pixel position was accurately identified. A coincidence timing resolution was 580 ± 12 ps. The experimental results indicated that the novel multiplexing method proposed in this study is able to effectively reduce the number of readout channels while maintaining accurate position identification with good energy and timing performance. In addition, it could be useful for the development of PET systems consisting of a large number of pixelated detectors.