• Title/Summary/Keyword: Pesticide mixture

Search Result 94, Processing Time 0.023 seconds

Chemical Pesticides and Plant Essential Oils for Disease Control of Tomato Bacterial Wilt

  • Lee, Young-Hee;Choi, Chang-Won;Kim, Seong-Hwan;Yun, Jae-Gill;Chang, Seog-Won;Kim, Young-Shik;Hong, Jeum-Kyu
    • The Plant Pathology Journal
    • /
    • v.28 no.1
    • /
    • pp.32-39
    • /
    • 2012
  • Efficacy of different control methods was evaluated for disease management of tomato bacterial wilt caused by $Ralstonia$ $solanacearum$. All six chemical pesticides applied to the bacterial suspension showed $in$ $vitro$ bactericidal activities against $R.$ $solanacearum$. Minimal inhibitory concentrations (MICs) of copper hydroxide (CH), copper hydroxide-oxadixyl mixture (CH+O), and copper oxychloride-dithianon mixture (CO+D) were all 200 ${\mu}g/ml$; MIC of copper oxychloride-kasugamycin (CO+K) mixture was 100 ${\mu}g/ml$; MICs of both streptomycin- validamycin (S+V) and oxine copper-polyoxine B mixture (OC+PB) were 10 ${\mu}g/ml$. Among these chemical pesticides, treatment of the detached tomato leaves with the 5 pesticides (1 mg/ml), except for OC+PB delayed early wilting symptom development caused by the bacterial inoculation ($10^6$ and $10^7$ cfu/ml). Four pesticides, CH, CH+O, CO+K and S+V, showed disease protection in pot analyses. Six plant essential oils, such as cinnamon oil, citral, clove oil, eugenol, geraniol and limonene, differentially showed their antibacterial activities $in$ $vitro$ against $R.$ $solanacearum$ demonstrated by paper disc assay. Among those, cinnamon oil and clove oil exert the most effective activity for protection from the wilt disease caused by the bacterial infection ($10^6$ cfu/ml). Treatment with cinnamon oil and clove oil also suppressed bacterial disease by a higher inoculum concentration ($10^7$ cfu/ml). Clove oil could be used for prevention of bacterial wilt disease of tomato plants without any phytotoxicity. Thus, we suggest that copper compounds, antibiotics and essential oils have potency as a controlling agent of tomato bacterial wilt.

Growth Inhibition Effect of Environment-friendly Farm Materials in Colletotrichum acutatum In Vitro (친환경 유기 농자재의 고추 탄저병(Colletotrichum acutatum) 병원균의 생장 억제 효과)

  • Kwak, Young-Ki;Kim, Il-Seop;Cho, Myeong-Cheoul;Lee, Seong-Chan;Kim, Su
    • Journal of Bio-Environment Control
    • /
    • v.21 no.2
    • /
    • pp.127-133
    • /
    • 2012
  • Inhibition effects on spore germination and mycelia growth for pepper anthracnose fungi (Collectricum acutatum) were investigated in vitro using eco-friendly agricultural materials as well as ecofriendly pesticides. The inhibition effect on mycelia growth of anthracnose fungi is the highest when the anthracnose mycelia were treated with a pesticide (commercial name: Koreayeok) that contains a mixture of Bacillus subtilis and Panibacillus polymyxa, resulting in 100% inhibition of the mycelia growth. Meanwhile, the range of 20~40% inhibition effects on the growth of anthracnose mycelia was observed with other commercial agricultural materials. The significant inhibition effects on spore formation of anthracnose fungus were shown in vitro with two water dispersible pesticides containing sulfur [BTB (100%) and SulfurStar (95.1%)], Koreayeok (95.0%), Borstar (99.0%) containing Bordeaux mixture, and Jihabudea-KM containing Psedomonas spp. (96.1%), respectively. Taken from these in vitro results of inhibiting of the spore germination and mycelia growth together, Koreayeok is the most effective on control of pepper anthracnose disease in vitro. In addition, two water dispersible pesticides containing sulfur (BTB and SulfurStar) and Borstar (99.0%) containing Bordeaux mixture are also significantly applicable to prevent pepper plants from anthracnose disease in vitro. It remains to be determined whether the selected eco-friendly agricultural materials in effective control of anthracnose in vitro can be used to control pepper anthracnose in field.

Synergistic action of pesticide mixtures using glutathione-s-transferase- and esterase-inhibiting properties in diamondback moth (Plutella xylostella L.) (Glutathione-S-transferase와 esterase 효소 저해특성을 이용한 농약의 혼합 상승효과)

  • Yu, Yong-Man;Hong, S.S.;Kim, S.;Hur, J.H.
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.1
    • /
    • pp.38-44
    • /
    • 2003
  • In vitro inhibitory activity of 34 insecticides and 31 fungicides to glutathione-S-transferase and esterases extracted from rats was determined. Of tested pesticides, the pesticides with high activity on both detoxifying enzymes were mixed with pesticides that are known to be detoxified by detoxifying enzymes. Glutathione-S-transferase was inhibited by thiodicarb $(I_{50}:1.87\times10^{-4}M)$, thiocyclam $(7.40\times10^{-4}M)$, dithianon $(7.55\times10^{-5}M)$, and tolylfluanide $(8.66\times10^{-5}M)$, while esterases by dichlorvos $(8.95\times10^{-8}M)$, pirimicarb $(2.74\times10^{-6}M)$, pyrazophos $(3.31\times10^{-5}M)$, and benomyl $(4.96\times10^{-5}M)$. After acephate known to be detoxified by glutathione-S-transferase was mixed with glutathione-S-transferase-inhibiting pesticides and phenthoate known to be detoxified by esterases was mixed with esterases-inhibiting pesticides, insecticidal activities of such mixtures were determined against diamondback moth (PlutelLa xylostella L.). Synergistic action was observed in all pesticide combinations. The highest synergistic action was obtained when phenthoate was combined with dichlorvos, showing that co-toxicity coefficients were 1512 and 1877 after 24 and 48 hours of treatment, respectively. Several other combinations of pesticides, such as phenthoate with benomyl, and acephate with dithianon, also showed synergism, showing that their co-toxicity coefficients were about 1,000 and 500, after 24 hours of treatment, respectively. Our results showed that combinations of pesticides inhibited by detoxifying enzymes and ones detoxified by detoxifying enzymes resulted in increased toxicities of pesticides, suggesting that such combinations could be used to develop pesticide mixtures with more broad spectrum and high effectiveness.

Identification, Mycological Characteristics and Response to fungicides of Anthracnose Pathogen Isolated from Pepper and Boxthorn in Cheongyang (청양 지역 고추와 구기자에서 분리한 탄저병균의 동정, 균학적 특징 및 살균제 저항성)

  • Kim, Gahye;Kim, Joohyeng;Kim, Heung Tae
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.3
    • /
    • pp.335-344
    • /
    • 2015
  • It was conducted to identify all 47 isolates obtained from infected fruits of pepper and boxthorn, and to investigate the mycological characteristics and the response to fungicides. All of 11 isolates from pepper were identified as Colletotrichum acutatum included into A2 group. Among 36 isolates from boxthorn, 14 isolates were identified as C. gloeosporioides, and the others were done as C. acutatum, which were composed as A1 group with 15 isolates and A3 with 7 isolates. After incubating the isolates on PDA at $25^{\circ}C$ for 10 days, the colony color of C. acutatum was greyish white, while that of C. gloeosporioides was orange at center of colony and was gradually turned into an greyish white to the periphery. The rate of conidia showing ellongated ellipsoidal shape with round ends was over 95% in C. acutatum isolated from pepper. However, C. acutatum isolated from boxthorn produced ellongated ellipsoidal conidia with the rate of 75%, and the others were pointed at one or both ends. Regardless of species of Colletotrichum, all isolated used in this study was showed an optimal temperature at $25^{\circ}C$. $EC_{50}$ values of all isolates of Colletotrichum spp. to 2 fungicides as carbendazim and the mixture of carbendazim and diethofencarb was investigated by an agar dilution method. With C. acutatum isolates from pepper belonged to A2 group, the mean of $EC_{50}$ value to carbendazim and the mixture of carbendazim and diethofencarb was 0.68 and $3.16{\mu}g/ml$, respectively. In the case of C. acutatum isolates from boxthorn, which were divided into 2 groups as A1 and A3 group, that to carbendazim was 0.21 at A1 and $0.24{\mu}g/ml$ at A3, while that to the mixture was 1.52 and $3.35{\mu}g/ml$. Isolates of C. gloeosporioides showed the mean of $EC_{50}$ value was $0.12{\mu}g/ml$ to carbendazim and $0.92{\mu}g/ml$ to the mixture. The value of resistant factor was higher in the isolates of C. acutatum obtained in boxthorn than those from pepper.

Control of Pepper Anthracnose Caused by Colletotrichum acutatum using Alternate Application of Agricultural Organic Materials and Iminoctadine tris + thiram (유기농업자재와 유기합성 살균제(Iminoctadine tris + thiram) 교호살포에 따른 고추 탄저병 방제 효과)

  • Hong, Sung-Jun;Kim, Yong-Ki;Jee, Hyeong-Jin;Shim, Chang-Ki;Kim, Min-Jeong;Park, Jong-Ho;Han, Eun-Jung;Kim, Jung-Hyun;Kim, Seok-Cheol
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.4
    • /
    • pp.428-439
    • /
    • 2015
  • Pepper anthracnose caused by Collectotrichum acutaum has been known as one of the most damaging diseases of pepper, which has reduced not only yield but also quality of pepper produce almost every year. This study was conducted to develop control strategy against pepper anthracnose by alternate application of agricultural organic materials and chemical fungicides. The alternate application effect of agricultural organic materials and chemical fungicides for controlling pepper anthracnose were examined in vitro and in the field. First, thirteen microbial agents and twenty two agricultural organic materials were screened for antifungal activity against C. acutatum through the dual culture method and bioassay. As a result, one microbial agent (Bacillus subtilis QST-713) and three agricultural organic materials (sulfur, bordeaux mixture, marine algae extracts) were found to show high inhibition effect against C. acutatum. In the field test, when Iminoctadine tris+thiram, a chemical fungicide for controlling pepper anthracnose, was sprayed, it reduced disease incidence by 89.5%. Meanwhile Sulfur, bordeaux mixture, copper, marine algae extracts and Bacillus subtilis QST-713 showed low disease incidence at the range of 33.1~81.0%. However, when Iminoctadine tris+thiram and agricultural organic materials(bordeaux mixture, marine algae extracts) were applied to pepper fruits alternately two times at 7 days interval, there was a 81.7 and 87.1% reduction in disease, respectively. Consequently, the alternate spray of chemical fungicide (Iminoctadine tris+thiram) and agricultural organic materials (bordeaux mixture, marine algae extracts) could be recommended as a control method to reduce the using amount of chemical fungicide.

In-situ functionalized biomass derived graphite-supported BiFeO3 for eradication of pollutants

  • Deepeka, Deepeka;Paramdeep, Kaur;Jyoti, Jyoti;Sandeep, Bansal;Sonal, Singhal
    • Advances in nano research
    • /
    • v.13 no.6
    • /
    • pp.527-543
    • /
    • 2022
  • A novel, green, versatile and magnetically retrievable BiFeO3/CDR (Bismuth ferrite/coriander) nanocomposites were fabricated via simple wet chemical method utilizing in situ functionalized, cheap coriander seed powder (CDR 5%, 10%, 15% and 20 wt%) as a fuel to enhance the efficiency of pristine BiFeO3. A comparative study was performed between BiFeO3/CDR and BiFeO3/CNT (Bismuth ferrite/carbon nanotubes) nanocomposites for the removal of various hazardous pollutants from waste water. The successful synthesis of the fabricated nanomaterials was monitored via FT-IR, Powder XRD, FE-SEM, CV, VSM, CHNS/O and XPS studies. The synthesized nanomaterials were employed for the oxidative degradation of Carbol fuchsin, Reactive black 5, Ciprofloxacin and Doxorubicin; adsorption of a pesticide malathion; and reduction studies for Para-nitrophenol (PNP). The fabricated nanomaterials (BiFeO3/CDR) showcased excellent efficiency and comparable results with (BiFeO3/CNT) for the removal of model pollutants. Moreover, synthesized green heterojunction was also testified for mixture of textile and pharmaceutical waste. Hence CDR can be utilized as a better alternative of CNTs.

Efficacy of an Integrated Biological Control of an Egg Parasitoid, Trichogramma evanescens Westwood, and Microbial Insecticide Against the Oriental Tobacco Budworm, Helicoverpa assulta (Guenée) Infesting Hot Pepper (고추를 가해하는 담배나방[Helicoverpa assulta (Guenée)]의 효과적 방제를 위한 쌀좀알벌(Trichogramma evanescens Westwood)과 미생물제제의 종합생물방제 효과)

  • Kim, Geun-Seob;Heo, Hye-Jung;Park, Jung-A;Yu, Yong-Suk;Hahm, Eun-Hye;Kang, Sung-Young;Kwon, Ki-Myeon;Lee, Keon-Hyung;Kim, Yong-Gyun
    • Korean journal of applied entomology
    • /
    • v.47 no.4
    • /
    • pp.435-445
    • /
    • 2008
  • Due to internal feeding behavior, the oriental tobacco budworm, Helicoverpa assulta ($Guen\acute{e}e$), infesting hot pepper has been regarded to be effectively controlled by targeting egg and neonate larval stages just before entering the fruits. This study aimed to develop an efficient biological control method focusing on these susceptible stages of H. assulta. An egg parasitoid wasp, Trichogramma evanescens Westwood, was confirmed to parasitize the eggs of H. assulta. A mixture of Gram-positive soil bacterium, Bacillus thuringiensis subsp. kurstaki, and Gram-negative entomopathogenic bacterium, Xenorhabdus nematophila ANU101, could effectively kill neonate larvae of H. assulta. A sex pheromone trap monitored the occurrence of field H. assulta adults. The microbial insecticide mixture was proved to give no detrimental effects on immature development and adult survival of the wasp by both feeding and contact toxicity tests. A combined treatment of egg parasitoid and microbial pesticide was applied to hot pepper fields infested by H. assulta. The mixture treatment of both biological control agents significantly decreased the fruit damage, which was comparable to the chemical insecticide treatment, though either single biological control agent did not show any significant control efficacy. This study also provides morphological and genetic characters of T. evanescens.

Management of the Development of Insecticide Resistance by Sensible Use of Insecticide, Operational Methods (실행방식 측면에서 살충제의 신중한 사용에 의한 저항성 발달의 관리)

  • Chung, Bu-Keun;Park, Chung-Gyoo
    • Korean journal of applied entomology
    • /
    • v.48 no.2
    • /
    • pp.123-158
    • /
    • 2009
  • An attempt was made to stimulate future research by providing exemplary information, which would integrate published knowledge to solve specific pest problem caused by resistance. This review was directed to find a way for delaying resistance development with consideration of chemical(s) nature, of mixture, rotation, or mosaics, and of insecticide(s) compatible with the biological agents in integrated pest management (IPM). The application frequency, related to the resistance development, was influenced by insecticide activity from potentiation, residual period, and the vulnerability to resistance development of chemical, with secondary pest. Chemical affected feeding, locomotion, flight, mating, and predator avoidance. Insecticides with negative cross-resistance by the difference of target sites and mode of action would be adapted to mixture, rotation and mosaic. Mixtures for delaying resistance depend on each component killing very high percentage of the insects, considering allele dominance, cross-resistance, and immigration and fitness disadvantage. Potential disadvantages associated with mixtures include disruption of biological control, resistance in secondary pests, selecting very resistant population, and extending cross-resistance range. The rotation would use insecticides in high and low doses, or with different metabolic mechanisms. Mosaic apply insecticides to the different sectors of a grid for highly mobile insects, spray unrelated insecticides to sedentary aphids in different areas, or mix plots of insecticide-treated and untreated rows. On the evolution of pest resistance, selectivity and resistance of parasitoids and predator decreased the number of generations in which pesticide treatment is required and they could be complementary to refuges from pesticides To enhance the viability of parasitoids, the terms on the insecticides selectivity and factors affecting to the selectivity in field were examined. For establishment of resistant parasitoid, migration, survivorship, refuge, alternative pesticides were considered. To use parasitoids under the pressure of pesticides, resistant or tolerant parasitoids were tested, collected, and/or selected. A parasitoid parasitized more successfully in the susceptible host than the resistant. Factors affecting to selective toxicity of predator are mixing mineral oil, application method, insecticide contaminated prey, trait of individual insecticide, sub-lethal doses, and the developmental stage of predators. To improve the predator/prey ratio in field, application time, method, and formulation of pesticide, reducing dose rate, using mulches and weeds, multicropping and managing of surroundings are suggested. Plant resistance, predator activity, selective insect growth regulator, and alternative prey positively contributed to the increase of the ratio. Using selective insecticides or insecticide resistant predator controlled its phytophagous prey mites, kept them below an economic level, increased yield, and reduced the spray number and fruits damaged.

Physical properties, released patterns and bio-efficacy of granular mixtures with chlomethoxyfen and butachlor formulated by different methods (제조방식을 달리한 chlomethoxyfen과 butachlor 혼합입제의 물리성, 수중용출도와 생물효과 비교)

  • Chung, Bong-Jin;Yeon, Jae-Heum
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.3
    • /
    • pp.36-44
    • /
    • 1998
  • To develope cost-effective new granular formulation of mixture with 7.0% chlomethoxyfen and 3.5% butachlor, this study was conducted by investigation of floatability, dispersibility or collapsability and released concentration of active ingredients in water and bio-efficacies of the granules formulated by different formulation methods compared to commercial pellet-extruded granules. They were formulated by coating on or impregnation into extruded pellets, sands and zeolites with two active ingredients, binders, friction reducer, dispersing agents and bentonite. Pellet-coated method showed similar floatability, collapsability and bio-efficacy to the commercial pellet-extruded one or better than that but unstable patterns of released concentration of chlomethoxyfen because of easy isolation of coated technical particles from the surface of granules. Sand-coated methods showed similar physical properties, released pattern of two active ingredients, and bio-efficacy to the commercial one. Liquid binders and/or dispersing agents are more important than powdered ones to control released concentration of active ingredients from the granule mixtures, to improve the floatability and dispersibility, and to show good bio-efficacy. Sand-coated one might be a suitable method if types and amount of liquid binders and dispersing agents are selected.

  • PDF

Occurrence and Changes of Botrytis elliptica resistant to fungicides (살균제 저항성 백합 잎마름병균(Botrytis elliptica)의 발생과 변화)

  • Kim, Byung-Sup;Chun, Hwan-Hong;Hwang, Young-A
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.1
    • /
    • pp.61-67
    • /
    • 2001
  • Five hundred sixteen isolates of Botrytis elliptica were isolated from infected leaves of Lilium longiflorum from Kangwon alpine areas in Korea during tile seasons from 1998 to 2000 and resistance of these isolates against some fungicides were examined. The isolation frequency of phenotypes resistant to benomyl, procymidone, and diethofencarb were 90.1, 32.4, and 40.9%, respectively. The isolates were divided into six phenotypic groups; RSS, RRS, SSR, SRR, RSR and RRR, representing sensitive (S) or resistant (R) to benzimidazole, dicarboximide, and N-phenylcarbamate fungicides in order. The percentage of six phenotypes were 40.7, 8.5, 7.2, 2.7, 19.8, and 21.1%, respectively. The RSS phenotype was the most frequently isolated, and tile SRR consisted of the extremely minor populations. In comparison studies on tile overwintering ability of each phenotype in relation to the others, the most frequently isolated RSS and SSR had the higher fitness ability than the less frequently isolated RSR, SRR, and RRR. Recently, population increase of tile RSR and RRR phenotypes may have resulted from the increased applications of the mixture of carbendazim and diethofencarb to control benzimidazole-resistant B. elliptica since 1998. The results of this study indicate that careful application of the fungicides is necessary to achieve effective control of leaf blight on lily in Korea.

  • PDF