• Title/Summary/Keyword: Perturbed Equations

Search Result 121, Processing Time 0.026 seconds

Modeling, Dynamics and Control of Spacecraft Relative Motion in a Perturbed Keplerian Orbit

  • Okasha, Mohamed;Newman, Brett
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.1
    • /
    • pp.77-88
    • /
    • 2015
  • The dynamics of relative motion in a perturbed orbital environment are exploited based on Gauss' and Cowell's variational equations. The inertial coordinate frame and relative coordinate frame (Hill frame) are used, and a linear high fidelity model is developed to describe the relative motion. This model takes into account the primary gravitational and atmospheric drag perturbations. Then, this model is used in the design of a navigation, guidance, and control system of a chaser vehicle to approach towards and to depart from a target vehicle in proximity operations. Relative navigation uses an extended Kalman filter based on this relative model to estimate the relative position/velocity of the chaser vehicle with respect to the target vehicle. This filter uses the range and angle measurements of the target relative to the chaser from a simulated LIDAR system. The corresponding measurement models, process noise matrix, and other filter parameters are provided. Numerical simulations are performed to assess the precision of this model with respect to the full nonlinear model. The analyses include the navigation errors and trajectory dispersions.

The Comparison of the Classical Keplerian Orbit Elements, Non-Singular Orbital Elements (Equinoctial Elements), and the Cartesian State Variables in Lagrange Planetary Equations with J2 Perturbation: Part I

  • Jo, Jung-Hyun;Park, In-Kwan;Choe, Nam-Mi;Choi, Man-Soo
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.1
    • /
    • pp.37-54
    • /
    • 2011
  • Two semi-analytic solutions for a perturbed two-body problem known as Lagrange planetary equations (LPE) were compared to a numerical integration of the equation of motion with same perturbation force. To avoid the critical conditions inherited from the configuration of LPE, non-singular orbital elements (EOE) had been introduced. In this study, two types of orbital elements, classical Keplerian orbital elements (COE) and EOE were used for the solution of the LPE. The effectiveness of EOE and the discrepancy between EOE and COE were investigated by using several near critical conditions. The near one revolution, one day, and seven days evolutions of each orbital element described in LPE with COE and EOE were analyzed by comparing it with the directly converted orbital elements from the numerically integrated state vector in Cartesian coordinate. As a result, LPE with EOE has an advantage in long term calculation over LPE with COE in case of relatively small eccentricity.

Computation of Laryngeal Flow and Sound through a Dynamic Model of the Vocal Folds (동적 성대 모델을 이용한 후두 내 유동 및 음향장에 대한 수치 연구)

  • Bae, Young-Min;Moon, Young-J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.21-24
    • /
    • 2008
  • The present study numerically investigates the glottal airflow characteristics as well as acoustic features of phonation fully coupled with dynamic behavior of vocal folds. The vocal folds are described by a low-dimensional body-covered model characterized by bio-mechanical parameters such as glottal width, vocal folds stiffness, and subglottal pressure. The flow in the vocal tract is modeled as an incompressible, axisymmetric form of the Navier-Stokes equations (INS), while the acoustic field is predicted by the linearized perturbed compressible equations (LPCE). The computed result shows that a two-mass model of vocal folds is sufficient to reproduce temporal variations in oral airflow and glottis motion produced by female speakers. It is also found that i) the glottal width has a significant effect on the amplitude of glottal flow, and thus on the amplitude of acoustic wave in the vocal tract, ii) the vocal fold tension is the main control parameter for the fundamental frequency of phonation, iii) the subglottal pressure plays an appreciable role on reproduction of the self-sustained oscillation of vocal folds, and iv) the strength of pulsating airflow and vortical structures are primarily affected by glottal width and subglottal pressure, and are closely related to pitch, loudness, and voice quality. Finally, more comprehensive explanation about the difference between one- and two-mass models is presented with discussion of effectiveness of vocal folds oscillation and voice quality.

  • PDF

THE ATTITUDE STABILITY ANALYSIS OF A RIGID BODY WITH MULTI-ELASTIC APPENDAGES AND MULTI-LIQUID-FILLED CAVITIES USING THE CHETAEV METHOD

  • Kuang, Jin-Lu;Kim, Byung-Jin;Lee, Hyun-Woo;Sung, Dan-Keun
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.209-220
    • /
    • 1998
  • The stability problem of steady motion of a rigid body with multi-elastic appendages and multi-liquid-filled cavities, in the presence of no external forces or torque, is considered in this paper. The flexible appendages are modeled as the clamped -free-free-free rectangular plates, or/and as the discrete mass- spring sub-system. The motion of liquid in every single ellipsoidal cavity is modeled as the uniform vortex motion with a finite number of degrees of freedom. Assuming that stationary holonomic constraints imposed on the body allow its rotation about a spatially fixed axis, the equation of motion for such a systematic configuration can be very complex. It consists of a set of ordinary differential equations for the motion of the rigid body, the uniform rotation of the contained liquids, the motion of discrete elastic parts, and a set of partial differential equations for the elastic appendages supplemented by appropriate initial and boundary conditions. In addition, for such a hybrid system, under suitable assumptions, their equations of motion have four types of first integrals, i.e., energy and area, Helmholtz' constancy of liquid - vortexes, and the constant of the Poisson equation of motion. Chetaev's effective method for constructing Liapunov functions in the form of a set of first integrals of the equations of the perturbed motion is employed to investigate the sufficient stability conditions of steady motions of the complete system in the sense of Liapunov, i.e., with respect to the variables determining the motion of the solid body and to some quantities which define integrally the motion of flexible appendages. These sufficient conditions take into account the vortexes of the contained liquids, the vibration of the flexible components, and coupling among the liquid-elasticity solid.

  • PDF

LINEAR ANALYSIS OF PARKER-JEANS INSTABILITY WITH COSMIC-RAY

  • KUWABARA TAKUHITO;KO CHUNG-MING
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.601-603
    • /
    • 2004
  • We present the results of the linear analysis for the Parker-Jeans instability in the magnetized gas disks including the effect of cosmic-ray diffusion along the magnetic field lines. We adopted an uni-formly rotating two temperature layered disk with a horizontal magnetic fields and solved the perturbed equations numerically. Fragmentation of gases takes place and filamentary structures are formed by the growth of the instability. Nagai et al. (1998) showed that the direction of filaments being formed by the Parker-Jeans instability depends on the strength of pressure outside the unperturbed gas disk. We found that at some range of external pressures the direction of filaments is also governed by the value of the diffusion coefficient of CR along the magnetic field lines k.

Aeroacoustic Computation of Cavity Flow in Self-Sustained Oscillations

  • Koh, Sung-Ryong;Yong Cho;Young J. Moon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.590-598
    • /
    • 2003
  • A computational aero-acoustic (CAA) method is used to predict the tonal noise generated from a cavity of automobile door seals or gaps at low flow Mach numbers (A$\_$$\infty$/=0.077 and 0.147) In the present method, the acoustically perturbed Euler equations are solved with the acoustic source term obtained from the unsteady incompressible Navier-Stokes calculations of the cavity flow in self-sustained oscillations. The aerodynamic and acoustic fields are computed for the Reynolds numbers based on the displacement thickness, Re$\_$$\delta$*/=850 and 1620 and their fundamental mode characteristics are investigated. The present method is also verified with the experimentally measured sound pressure level (SPL) spectra.

An Efficient On-line Identification Approach to Rotor Resistance of Induction Motors Without Rotational Transducers

  • Lee, Sang-Hoon;Yoo, Ho-Sun;Ha, In-Joong
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.1
    • /
    • pp.86-93
    • /
    • 1998
  • In this paper, we propose an effective on-line identification method for rotor resistance, which is useful in making speed control of induction motors without rotational transducers robust with respect to the variation in rotor resistance. Our identification method for rotor resistance is based on the linearly perturbed equations of the closed-loop system for sensorless speed control about th operating point. Our identification method for rotor resistance uses only the information of stator currents and voltages. In can provide fairly good identification accuracy regardless of load conditions. Some experimental results are presented to demonstrate the practical use of our identification method. For our experimental work, we have built a sensorless control system, in which all algorithms are implemented on a DSP. Our experimental results confirm that our on-line identification method allows for high precision speed control of commercially available induction motors without rotational transducers.

  • PDF

Exact perturbation analysis technique and optimal buffer storage design for tandem queueing networks

  • Kwon, Wook-Hyun;Park, Hong-Seong;Chung, B.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.469-475
    • /
    • 1991
  • In this paper, we suggest the exact perturbation analysis(Exact_PA) technique with respect to the buffer storage in tandem queueing networks, through which the optimal buffer storage design problem is considered. The discrete event dynamic equations for the departure time of a customer are presented together with the basic properties of Full Out(FO) and No Input(NI) with respect to the buffer storage. The new perturbation rules with respect to the buffer storage are suggested, from which the exact perturbed path can be obtained. The optimal buffer storage problem is presented by introducing a performance measure consisting of the throughput and the buffer storage cost. An optimization algorithm maximizing this performance measure is derived by using the Exact_PA technique. The proposed perturbation analysis technique and the optimization algorithm are validated by numerical examples.

  • PDF

MODIFIED DECOMPOSITION METHOD FOR SOLVING INITIAL AND BOUNDARY VALUE PROBLEMS USING PADE APPROXIMANTS

  • Noor, Muhammad Aslam;Noor, Khalida Inayat;Mohyud-Din, Syed Tauseef;Shaikh, Noor Ahmed
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1265-1277
    • /
    • 2009
  • In this paper, we apply a new decomposition method for solving initial and boundary value problems, which is due to Noor and Noor [18]. The analytical results are calculated in terms of convergent series with easily computable components. The diagonal Pade approximants are applied to make the work more concise and for the better understanding of the solution behavior. The proposed technique is tested on boundary layer problem; Thomas-Fermi, Blasius and sixth-order singularly perturbed Boussinesq equations. Numerical results reveal the complete reliability of the suggested scheme. This new decomposition method can be viewed as an alternative of Adomian decomposition method and homotopy perturbation methods.

  • PDF

The Interaction Potential Functions in an Electrolyte Protein Solution

  • Jee, Nam-Yong;Kim, Jae-Jun
    • Macromolecular Research
    • /
    • v.14 no.6
    • /
    • pp.654-658
    • /
    • 2006
  • Recent developments in equations of state for molecular fluids have demonstrated the feasibility of using the hard-sphere equation to describe the effects of repulsive forces in simple fluids. By including a suitable term for attractive forces, most conveniently a uniform background potential, the properties of bio-macromolecular interaction can be roughly calculated. However, the choice of the potential used in perturbed hard-sphere chain (PHSC) theory for describing the attractions between macromolecules is rather complicated. For hard-sphere chains, the prediction accuracy from each model strongly depends on the choice of potential function.