• 제목/요약/키워드: Perturbation effect

검색결과 329건 처리시간 0.023초

기하형상의 임의교란이 음향산란에 미치는 영향 (Effect of Random Geometry Perturbation on Acoustic Scattering)

  • 주관정
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1992년도 추계학술대회논문집; 반도아카데미, 20 Nov. 1992
    • /
    • pp.117-123
    • /
    • 1992
  • In recent years, the finite element method has become one of the most popular numerical technique for obtaining solutions of engineering science problems. However, there exist various uncertainties in modeling the problems, such as the dimensions(geometry shape), the material properties, boundary conditions, etc. The consideration for the uncertainties inherent in the problems can be made by understanding the influences of uncertain parameters[1]. Determining the influences of uncertainties as statistical quantities using the standard finite element method requires enormous computing time, while the probabilistic finite element method is realized as an efficient scheme[2,3] yielding statistical solution with just a few direct computations. In this paper, a formulation of the probabilistic fluid-structure interaction problem accounting for the first order perturbation of geometric shape is derived, and especially probabilistical acoustic pressure scattering from the structure with surrounding fluid is focused on. In Section 2, governing equations for the fluid-structure problems are given. In Section 3, a finite element formulation, based on the functional, is presented. First order perturbation of geometric shape with randomness is incorporated into the finite element formulation in conjunction with discretization of the random fields in Section 4 and 5. Finally, the proposed formulation is applied to a acoustic pressure scattering problem from an infinitely long cylindrical shell structure with randomness of radial perturbation.

  • PDF

Characteristics of the Inlet with the Pressure Perturbation in the Ramjet Engine

  • Shin, Dong-Shin;Kang, Ho-Chul
    • Journal of Mechanical Science and Technology
    • /
    • 제20권2호
    • /
    • pp.286-294
    • /
    • 2006
  • Flows in a ramjet inlet is simulated for the study of the rocket-ramjet transition. The flow is unsteady, two-dimensional axisymmetric, compressible and turbulent. Double time marching method is used for the unsteady calculation and HLLC method is used as a higher order MUSCL method. As for turbulent calculation, $\kappa-\omega$ SST model is used for more accurate viscous calculations. Sinusoidal pressure perturbation is given at the exit and the flow fields at the inlet is studied. The cruise condition as well as the ground test condition are considered. The pressure level for the ground test condition is relatively low and the effect of the pressure perturbation at the combustion chamber is small. The normal shock at the cruise condition is very sensitive to the pressure perturbation and can be easily detached from the cowl when the exit pressure is relatively high. The sudden decrease in the mass flux is observed when the inlet flow becomes subcritical, which can make the inlet incapable. The amplitude of travelling pressure waves becomes larger as the downstream pressure increases, and the wavelength becomes shorter as Mach number increases. The phase difference of the travelling perturbed pressure wave in space is 180 degree.

수력파동에 의한 분무변화 및 저주파 연소불안정에의 영향 예측 (The change of spray characteristics on hydraulic acoustic wave influence and prediction of low combustion instability)

  • 김태균;이상승;윤웅섭
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제29회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.152-160
    • /
    • 2004
  • Studies to investigate the influence on hydraulic acoustic wave were conducted using pressure swirl atomizer under making frequency range from 0 to 60Hz using water as a propellant. Pressure oscillation from hydraulic sources gives a strong influences on atomization and mixing processes. The ability to drive these low frequency pressure oscillations makes spray characteristics changeable. The effect of pressure perturbation and its spray characteristics showed that low injector pressure with pressure pulsation gives more significantly than high injector pressure with pressure perturbation in SMD, spray cone angle, breakup length. Moreover, this data could be used for prediction of low combustion instability getting G factor.

  • PDF

Vibration of electrostatically actuated microbeam by means of homotopy perturbation method

  • Bayat, M.;Pakar, I.;Emadi, A.
    • Structural Engineering and Mechanics
    • /
    • 제48권6호
    • /
    • pp.823-831
    • /
    • 2013
  • In this paper, it has been attempted to present a powerful analytical approach called Homotopy Perturbation Method (HPM). Free vibration of an electrostatically actuated microbeam is considered to study analytically. The effect of important parameters on the response of the system is considered. Some comparisons are presented to verify the results with other researcher's results and numerical solutions. It has been indicated that HPM could be easily extend to any nonlinear equation. We try to provide an easy method to achieve high accurate solution which valid for whole domain.

불확실성 요소를 갖는 3D 크레인 시스템의 강인적응제어 (Robust Adaptive Control of 3D Crane Systems with Uncertainty)

  • 정상철;김동원;이형기;조현철
    • 전기학회논문지
    • /
    • 제57권1호
    • /
    • pp.102-108
    • /
    • 2008
  • This paper presents robust and adaptive control method for complicated three dimensional crane systems with uncertain effect. We consider an overhead crane system in which a trolly located on its top is moved to x- and y-axis independently. We first approximate the complicated crane model through linearization approach to simply construct a PD control and then design an adaptive control system for compensating modeling error and control deviation which is feasibly occurred due to system perturbation in practice. An adaptive control scheme is analytically derived using Lyapunov stability theory for a given bound of system perturbation. We accomplish numerical simulation for evaluation of the proposed control system and demonstrate its superiority comparing with the traditional control strategy.

Stochastic bending characteristics of finite element modeled Nano-composite plates

  • Chavan, Shivaji G.;Lal, Achchhe
    • Steel and Composite Structures
    • /
    • 제26권1호
    • /
    • pp.1-15
    • /
    • 2018
  • This study reported, the effect of random variation in system properties on bending response of single wall carbon nanotube reinforced composite (SWCNTRC) plates subjected to transverse uniform loading is examined. System parameters such as the SWCNT armchair, material properties, plate thickness and volume fraction of SWCNT are modelled as basic random variables. The basic formulation is based on higher order shear deformation theory to model the system behaviour of the SWCNTRC composite plate. A C0 finite element method in conjunction with the first order perturbation technique procedure developed earlier by the authors for the plate subjected to lateral loading is employed to obtain the mean and variance of the transverse deflection of the plate. The performance of the stochastic SWCNTRC composite model is demonstrated through a comparison of mean transverse central deflection with those results available in the literature and standard deviation of the deflection with an independent First Order perturbation Technique (FOPT), Second Order perturbation Technique (SOPT) and Monte Carlo simulation.

위성궤도의 한계 경사각에 대한 특성 (THE CHARACTERISTICS OF CAITICAL INCLINATION OF SATELLITE ORBIT)

  • 이현주;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • 제10권1호
    • /
    • pp.17-27
    • /
    • 1993
  • The orbit characteristics and perturbation effects of an artificial satellite with critical inclination have been studied. The critical inclination problem in artificial satellite theory is treated as Ideal Resonance Problem(IRP). The KITSAT-1 satellite launched by Arian 42P at Guiana in August 11, 1992 has orbital inclination close to the critical value cos-1(1/√5). In that case, there is a singularity in some perturbation terms and perigee of the orbit is fixed because d$\omega$/dt is theoretically equal to zero. But actually the long periodic behaviour in argument of perigee, $\omega$ shows a small oscillation. The causes of the oscillation and the relativistic effect in IRP have been studied and applied to the KITSAT-1. The geo-potential perturbation terms which are seperated inclination terms have been obtained using Algebraic manipulation. Also luni-solar disturbing funtion based on the relative position of the sun, moon, and satellite has been obtained. Phase portraits are used to depict the change of eccentricity and grgument of perigee. The variations of each orbital elements have been obtained in case of the KITSAT-1.

  • PDF

Salt-Induced Protein Precipitation in Aqueous Solution: Single and Binary Protein Systems

  • Kim, Sang-Gon;Bae, Young-Chan
    • Macromolecular Research
    • /
    • 제11권1호
    • /
    • pp.53-61
    • /
    • 2003
  • A molecular-thermodynamic model is developed for the salt-induced protein precipitation. The protein molecules interact through four intermolecular potentials. An equation of state is derived based on the statistical mechanical perturbation theory with the modified Chiew's equation for the fluid phase, Young's equation for the solid phase as the reference system and a perturbation based on the protein-protein effective two body potential. The equation of state provides an expression for the chemical potential of the protein. In a single protein system, the phase separation is represented by fluid-fluid equilibria. The precipitation behaviors are simulated with the partition coefficient at various salt concentrations and degree of pre-aggregation effect for the protein particles. In a binary protein system, we regard the system as a fluid-solid phase equilibrium. At equilibrium, we compute the reduced osmotic pressure-composition diagram in the diverse protein size difference and salt concentrations.

Frozen Orbits Construction for a Lunar Solar Sail

  • Khattab, Elamira Hend;Radwan, Mohamed;Rahoma, Walid Ali
    • Journal of Astronomy and Space Sciences
    • /
    • 제37권1호
    • /
    • pp.1-9
    • /
    • 2020
  • Frozen orbit is an attractive option for orbital design owing to its characteristics (its argument of pericenter and eccentricity are kept constant on an average). Solar sails are attractive solutions for massive and expensive missions. However, the solar radiation pressure effect represents an additional force on the solar sail that may greatly affect its orbital behavior in the long run. Thus, this force must be included as a perturbation force in the dynamical model for more accuracy. This study shows the calculations of initial conditions for a lunar solar sail frozen orbit. The disturbing function of the problem was developed to include the lunar gravitational field that is characterized by uneven mass distribution, third body perturbation, and the effect of solar radiation. An averaging technique was used to reduce the dynamical problem to a long period system. Lagrange planetary equations were utilized to formulate the rate of change of the argument of pericenter and eccentricity. Using the reduced system, frozen orbits for the Moon sail orbiter were constructed. The resulting frozen orbits are shown by two 3Dsurface (semi-major, eccentricity, inclination) figures. To simplify the analysis, we showed inclination-eccentricity contours for different values of semi-major axis, argument of pericenter, and values of sail lightness number.

Thermal effects on nonlocal vibrational characteristics of nanobeams with non-ideal boundary conditions

  • Ebrahimi, Farzad;Shaghaghi, Gholam Reza
    • Smart Structures and Systems
    • /
    • 제18권6호
    • /
    • pp.1087-1109
    • /
    • 2016
  • In this manuscript, the small scale and thermal effects on vibration behavior of preloaded nanobeams with non-ideal boundary conditions are investigated. The boundary conditions are assumed to allow small deflections and moments and the concept of non-ideal boundary conditions is applied to the nonlocal beam problem. Governing equations are derived through Hamilton's principle and then are solved applying Lindstedt-Poincare technique to derive fundamental natural frequencies. The good agreement between the results of this research and those available in literature validated the presented approach. The influence of various parameters including nonlocal parameter, thermal effect, perturbation parameter, aspect ratio and pre-stress load on free vibration behavior of the nanobeams are discussed in details.